Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Identifying Brand Loyal Customers with Clustering or Declining
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > Identifying Brand Loyal Customers with Clustering or Declining
Business Intelligence

Identifying Brand Loyal Customers with Clustering or Declining

vincentg64
vincentg64
4 Min Read
SHARE

It can be hard to discern where and how customer loyalty is forged, with so many external forces influencing customer sentiment like communication, retail merchandising and the right messaging. Clustering or Decile analysis may be used to segment customers based on their loyalty to a brand and identify those who have lost trust in it. Loyalty may be defined as the percentage of times that a customer purchases a certain brand of product compared to all brands in the same product category. A measure of brand loyalty may be required to gauge the response of buyers to a new campaign or other event in the marketplace. Performing a loyalty analysis requires a way of linking each transaction to the following: an identifiable customer with a loyalty card, website cookie, smart card, or other unique identifier.

As an example, let’s assume that a retailer sells a store brand of ice cream, ‘JELLO’, as well as two competitor brands named ‘PUDDING’ and ‘FUDGEO’, respectively. The store would like to evaluate customer loyalty to its JELLO brand after several thousand containers had to be recalled over a one-and-a-half month period. The retailer’s ‘BUYER’ loyalty card allows each ice cream purchase to be linked to a specific customer, and a random sample of customers has revealed the following:

– – the average customer purchases a container of ice cream once a week

– – time of year has no impact on whether a customer buys JELLO versus either PUDDING or FUDGEO brand of ice cream

More Read

big data in native advertising
AI Advances Help Contextual Targeted Advertising Strengthen Branding
Decision Management and fixing healthcare
Meet Your Company’s New Virtual Assistant – Big Data
Data-Driven Design: A Beautiful Opportunity or a Massive Headache?
Top 3 Ways FP&A Analytics Can Get Your Financial House in Order

The above knowledge is important for determining how many periods of data are required to evaluate each customer’s loyalty to the JELLO brand. At least two months of data before, during and after the product recall took place is required for this analysis. For each customer, a ‘JELLO LOYALTY’ variable may be created for the three two-month periods: one for before, during and after the product recall. LOYALTY is calculated by dividing the number of times that a JELLO ice cream is purchased by the total number of ice cream purchases (JELLO, PUDDING and FUDGEO) for each two-month period. One final step is required before conducting a decile or clustering analysis: creating a ‘JELLO LOYALTY CHANGE’ variable for each customer. This variable captures the degree to which each store customer’s JELLO ice cream purchases is more, less or the same after the product recall.

Once the JELLO LOYALTY CHANGE variable is run through a clustering algorithm or decile analysis, loyal JELLO brand customers will be revealed. These are buyers who continue to purchase the same percentage of JELLO brand ice cream versus others after the product recall. Clustering may reveal an additional segment of customers who did change their behavior as a result of the JELLO product recall. They require attention from the marketing department in order to re-establish a trust in the JELLO brand. Other JELLO ice cream customers may have stopped buying during the product recall period but continued their previous purchasing pattern in the two months immediately after. This group should be treated the same as other groups from whom revenue was more permanently lost.

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

dedicated servers for ai businesses
5 Reasons AI-Driven Business Need Dedicated Servers
Artificial Intelligence Exclusive News
data analytics for pharmacy trends
How Data Analytics Is Tracking Trends in the Pharmacy Industry
Analytics Big Data Exclusive
ai call centers
Using Generative AI Call Center Solutions to Improve Agent Productivity
Artificial Intelligence Exclusive
warehousing in the age of big data
Top Challenges Of Product Warehousing In The Age Of Big Data
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

big data service-oriented hotel
AnalyticsBest PracticesBig DataBusiness IntelligenceCulture/LeadershipData ManagementDecision ManagementInside CompaniesKnowledge ManagementMarket ResearchMarketingPolicy and GovernancePredictive AnalyticsUnstructured Data

Big Data Empowers the InterContinental Hotel Group

7 Min Read

First Look – AlignSpace

4 Min Read

Will Bollywood take the shine off Communications revenue? Competing in Media & Communications with data-driven analytics

9 Min Read

Clinical Reporting with R

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?