Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: The Human Factor Continually Confounds Probability Models
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Modeling > The Human Factor Continually Confounds Probability Models
ExclusiveModelingPredictive AnalyticsStatistics

The Human Factor Continually Confounds Probability Models

paulbarsch
paulbarsch
3 Min Read
SHARE

With four weeks to go in the 2011 Major League Baseball season, the probability of the Boston Red Sox of making the playoffs was 99.6%. And most of us know the story; in one of the biggest collapses in baseball history, the Red Sox tanked a nine game lead and served the wild card slot to the Tampa Bay Rays. In creating “one for the record books”, the 2011 Red Sox show us that the human factor continually confounds probability models.

With four weeks to go in the 2011 Major League Baseball season, the probability of the Boston Red Sox of making the playoffs was 99.6%. And most of us know the story; in one of the biggest collapses in baseball history, the Red Sox tanked a nine game lead and served the wild card slot to the Tampa Bay Rays. In creating “one for the record books”, the 2011 Red Sox show us that the human factor continually confounds probability models.

Some things aren’t supposed to happen. The 2011 Boston Red Sox certainly should not have missed the playoffs with a nine game lead, and the 1995 Anaheim Angels should not have finished their year 12-26 (losing a nine game lead and missing the playoffs). Moreover, probability models said the stock market (DJIA) should not have lost 54% of its value in the 2008 “Great Recession”.

More Read

Leverage Big Data for startups
The Best Ways Startups Can Leverage Big Data in 2017
New “Predictive Analytics in the Cloud” Deliverable
Server Management Best Practices for Data-Driven Organizations
4 Top Advanced Web Analytics Tools To Get More Out Of Your Website
Could Cloud Based Systems Save the World?

There’s definitely a danger in too much reliance on normal distribution probability models, especially when humans are concerned says Financial Times writer John Authers. 

Studying the 2011 Boston Red Sox, Authers suggests the team may have been overconfident in statistics since few teams in baseball history had collapsed with such a lead.  

Authers also believes bell curve probabilistic models would not have been a reliable indicator of possible failure because such models assume event independence where one event should not affect another. But those who follow sports understand the concept of “momentum in a game”, or even from game-to-game where a team can feed off past success to gain confidence.

In reference to the 2008 market crash, Steven Solmonson, head of Park Place Capital Ltd said; “Not in a million years would we have expected this gyration to be as vicious and enduring as it has been.”  And I’m sure that Boston Red Sox fans didn’t believe their team could lose a significant lead over the Tampa Bay Rays with just a few games left in the season.

Whenever humans are involved, the lesson is clear: don’t get over confident in normal distribution probability models. Next thing you know, you might get slapped (or worse) by the fat tail.

 

 

TAGGED:bayesianbell curveprobabilitystatistics
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

image fx (2)
Monitoring Data Without Turning into Big Brother
Big Data Exclusive
image fx (71)
The Power of AI for Personalization in Email
Artificial Intelligence Exclusive Marketing
image fx (67)
Improving LinkedIn Ad Strategies with Data Analytics
Analytics Big Data Exclusive Software
big data and remote work
Data Helps Speech-Language Pathologists Deliver Better Results
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

NYT on breast cancer screening and probabilty

4 Min Read

A Work of Art: Efron on Bayesian Inference

3 Min Read

Probability and Karl Rove

2 Min Read
first data scientist Norman Nie
AnalyticsBig DataHadoop

The First Data Scientist on the Evolution of Data Science

11 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive
AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?