Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: How Data Enrichment Is A Force Multiplier In Analytics
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Data Management > Best Practices > How Data Enrichment Is A Force Multiplier In Analytics
AnalyticsBest PracticesBig DataData ManagementExclusive

How Data Enrichment Is A Force Multiplier In Analytics

Steve Jones
Steve Jones
5 Min Read
data enrichment and analytics
Shutterstock Licensed Photo
SHARE

Based on the definition by Techopedia, data enrichment is the process by which raw data is improved so that it can be better and more easily utilized. While there are a lot of data sources that generate tons and tons of raw data, much of this raw data would be better used if it were first enriched. Data enrichment is the first step in the process by which we gain valuable insights that can benefit a company based on its collected data through analytics or machine learning. Even something as simple as typo-correction can turn raw data into more easily processable data with less data being tossed out as unusable. Data extrapolation is also considered data enrichment, filling in gaps and holes in our data to conform with the mathematical model set out by previous data points. Data enrichment allows for data to be fed into a system in a format that is easily understood by the algorithm to ensure that the outputs we get are consistent with the raw data we put in.

Contents
Taking the Next StepMachine Learning through Enriched DataInformed Decisions through Analytics

Taking the Next Step

After we’ve enriched our data, where do we go from here? The next rational step in our data processing is augmentation. While collecting the data might be enough for some companies, to get the real benefit out of data enrichment, we need to go beyond this, adding to the data. Using data collection points to collate, arrange, and categorize data makes for a much more robust data enrichment system. This sets the data up for use in analytics and machine learning, where we put our data that we’ve collected and enriched to work for us. Using analytics to generate customer insights or other pertinent information can help us to inform and target our marketing. Forbes states rightly that data is crucial to targeting the right customers with the right experiences.

Machine Learning through Enriched Data

Gathering insights is a long-term effort. Trends don’t usually pinpoint themselves after a single day of data. Usually it takes months, sometimes years, to determine what a trend is and to glean information from that trend. Analytics relies on spotting patterns within the data and figuring out how those patterns apply to the company as a whole. It uses a set of key data points that the company is interested in as a basis for its exploration. While analytics is important and is a huge part of informing marketing tactics in the world today, it falls short in figuring out the big picture. That’s where machine learning comes in. Through specialized algorithms, we can use the enriched data we previously collected and boosted to give us insights into all sorts of customer patterns and trends, not just those that we’ve figured out beforehand. As SAS puts it, machine learning is a type of data analysis that deals with the automation of analytical model-building. The importance of automated model building is that there is no need to limit ourselves to a simple human-processable amount of data. We can literally use all the data we collect, no matter how much data that is. The implications to business are profound, as it means that companies offering eDiscovery services can be informed on a wide range of things that they didn’t even know they were lacking. In essence, machine learning takes data analytics to its logical conclusion by offering true insight into a business through automated processing of enriched data.

Informed Decisions through Analytics

Information is processed data, and information is what the heads of a company need in order to make decisions. With the added power of enriched data boosting the processing of collected data, a company can stand to benefit immensely, giving insights into new and previously uncharted areas. This has implications, not just for customer profiles, but for things like business efficiency and customer impact as well. Machine learning gives a company even more reach and coverage with its collected data and turns that data into a true resource, one that can lead to an increased bottom line for its parent company if utilized effectively.

More Read

A New Economy of Data
Driving Web Sales with Big Data and Personalization
ROI for Big Data and Analytics
It’s called Collision Warning with Brake Support, and it…
Big Data Creates Greater Divide Between CDN & Traditional Web Hosting
TAGGED:big datadatadata enrichmentdata management
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

sales and data analytics
How Data Analytics Improves Lead Management and Sales Results
Analytics Big Data Exclusive
ai in marketing
How AI and Smart Platforms Improve Email Marketing
Artificial Intelligence Exclusive Marketing
AI Document Verification for Legal Firms: Importance & Top Tools
AI Document Verification for Legal Firms: Importance & Top Tools
Artificial Intelligence Exclusive
AI supply chain
AI Tools Are Strengthening Global Supply Chains
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Finding the Right HR Datafication Solution

9 Min Read
legal repercussion with big data
Big DataBusiness RulesData ManagementPolicy and Governance

New Legal And Ethical Challenges Of Big Data

7 Min Read
how big data changing internet experience
Big Data

How Big Data is Changing the Internet Experience for Average Consumers

5 Min Read

SAP Business Analytics Strategy Built on SAP HANA and Delivers Better Business Intelligence

10 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?