By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics in sports industry
    Here’s How Data Analytics In Sports Is Changing The Game
    6 Min Read
    data analytics on nursing career
    Advances in Data Analytics Are Rapidly Transforming Nursing
    8 Min Read
    data analytics reveals the benefits of MBA
    Data Analytics Technology Proves Benefits of an MBA
    9 Min Read
    data-driven image seo
    Data Analytics Helps Marketers Substantially Boost Image SEO
    8 Min Read
    construction analytics
    5 Benefits of Analytics to Manage Commercial Construction
    5 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: How to Clean Survey Data
Share
Notification Show More
Latest News
data analytics in sports industry
Here’s How Data Analytics In Sports Is Changing The Game
Big Data
data analytics on nursing career
Advances in Data Analytics Are Rapidly Transforming Nursing
Analytics
data analytics reveals the benefits of MBA
Data Analytics Technology Proves Benefits of an MBA
Analytics
anti-spoofing tips
Anti-Spoofing is Crucial for Data-Driven Businesses
Security
ai in software development
3 AI-Based Strategies to Develop Software in Uncertain Times
Software
Aa
SmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Uncategorized > How to Clean Survey Data
Uncategorized

How to Clean Survey Data

AnniePettit
Last updated: 2015/08/14 at 8:30 AM
AnniePettit
3 Min Read
SHARE

How to clean survey data

How to clean survey data

 

As much as you’d like to dive directly into your data, the best data analysts know that garbage in garbage out will be the phrase of the day if time isn’t spent cleaning the data first. With that in mind, here are a few important steps you’ll need to take to clean your survey data.

  1. The most important thing you can do during the data cleaning process is to save your dataset with a new name after every significant change. Save the original, untouched dataset with a specific name, e.g., “PetFoodSurveyRAW.” After that, add a number to the end of the name, e.g., PetFoodSurvey1, PetFoodSurvey2, PetFoodSurvey3, PetFoodSurvey4. You can never have too many versions, particularly when you realize at PetFoodSurvey17 that you made a mistake and need to return to PetFoodSurvey6.
  2. Run a frequency distribution of each variable. By looking for these specific issues, you will be able to determine whether your data was properly uploaded into the software, whether certain questions were coded incorrectly, whether the skip patterns functioned as planned, and whether certain people had difficulty responding. Look for:
    1. Numbers that are unexpectedly high or low
    2. Numbers that seem unrealistic given the question
    3. Responses that are rare
    4. Responses that were selected by no one
  3. Make sure numerical variables are defined as such, and not as string variables. Otherwise, anytime you ask for a frequency distribution, the numbers will not be in order and mistakes will happen. Improper definitions will also prevent some variables from being available for certain statistical analyses.
  4. Make sure that missing responses were not automatically recoded as valid responses by the statistical software. For instance, some software systems may change an empty cell into a zero which might actually be a real answer. This could change average scores and percentages in massive ways causing you to make massively incorrect generalizations.
  5. Check that every variable label matches the data. For instance, make sure that the label “Male” truly corresponds with the number “1″ assigned to it. Check EVERY variable.
  6. Lastly, apply your standard data quality process to remove any survey responses that don’t seem to have come from people who were paying close attention to their answers. Of course, you’ll need to make sure you’ve already included data quality questions in your survey.

Let the analyses begin!

AnniePettit August 14, 2015
Share this Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

data analytics in sports industry
Here’s How Data Analytics In Sports Is Changing The Game
Big Data
data analytics on nursing career
Advances in Data Analytics Are Rapidly Transforming Nursing
Analytics
data analytics reveals the benefits of MBA
Data Analytics Technology Proves Benefits of an MBA
Analytics
anti-spoofing tips
Anti-Spoofing is Crucial for Data-Driven Businesses
Security

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

big data improves
Big DataJobsKnowledge ManagementUncategorized

3 Ways Big Data Improves Leadership Within Companies

6 Min Read
Image
Uncategorized

IT Is Not Analytics. Here’s Why.

7 Min Read

Romney Invokes Analytics in Rebuke of Trump

4 Min Read

WEF Davos 2016: Top 100 CEO bloggers

14 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US

© 2008-23 SmartData Collective. All Rights Reserved.

Removed from reading list

Undo
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?