Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Guest Blog: Data 2.0 Conference Report
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Data Management > Best Practices > Guest Blog: Data 2.0 Conference Report
Best PracticesBusiness IntelligenceCloud ComputingData VisualizationMarketingModeling

Guest Blog: Data 2.0 Conference Report

Daniel Tunkelang
Daniel Tunkelang
5 Min Read
SHARE

 

Note: This post was written by Scott Nicholson, a Senior Data Scientist at LinkedIn. Scott is data and modeling geek with a passion for startups, product and user experience. His work at LinkedIn focuses on analyzing and improving user engagement and monetization.

 

More Read

Depression Economics: America’s Economic Crisis
Big Data Analytics: The Future is Already Here
3 Ways Big Data Improves Leadership Within Companies
Experts Find AI Can Resolve Major Influencer Marketing Mistakes
No Data Warehouse Required: BI Reporting Extends Its Reach

Note: This post was written by Scott Nicholson, a Senior Data Scientist at LinkedIn. Scott is data and modeling geek with a passion for startups, product and user experience. His work at LinkedIn focuses on analyzing and improving user engagement and monetization.

I’m happy to report back on my experience at the Data 2.0 conference, an event organized by midVentures and targeted at entrepreneurs building products to leverage the dramatic increase in publicly and privately collected data. The conference has four main themes: what data is available, how to obtain data, how to store and access data, and how to create value from data products. For data nerds or hackers, the conference offered a delightful stream of  “you know what would be cool…” ideas.

The morning started off on a strong foot with a talk by Vivek Wadhwa on how data is going to define the next generation of successful startups in a new information age. He observed the increasing online access to data that has previously been restricted to offline access (or no access at all). He also emphasized the importance of  new sources of data, such as medical records and genome data. We need to think of social use of data beyond Twitter, Facebook and LinkedIn: for example, genome data will allow us to connect to each other in ways that helps us better understand our similarities and differences. Meanwhile, some existing data sources will become increasingly open and available to all. Wadhwa stressed the importance of leveraging the open sources of federal, state and local government data to come up with solutions to the existing closed and clunky legacy systems that governments used to generate data reports (a pity that data.gov and related programs may be defunded — DT).

The morning keynote segued nicely into the panel on open data sources. Jay Nath, Director of CRM for the city of San Francisco, noted that, while many applications are using government data and APIs, they mostly address consumer convenience (e.g., public transit apps) rather than government efficiency.  Panelists agreed that government employees have few incentives to take risks by using new technology: legacy systems might be expensive, inflexible and inefficient, but they do perform their limited function. Alluding to Eric Ries’s idea of a “lean startup“, Nath suggested the concept of a “lean government” that lowered costs, sped up its operations, and avoided procurement processes by using open source technology — all in the context of providing services to its citizens.

The inspiring mid-day keynote by former Amazon Chief Scientist Andreas Weigend took a different perspective from the morning sessions: he focused on the how data sharing can provide tangible value to end-users, even resulting in significant behavior change. He cited products like tweeting weight scales, FitBit, and Nike + that allow people to share data about their fitness efforts, thus leading to social reinforcement for positive behaviors. I personally see this area as a great example of where data scientists and engineers can create enormous economic value and increase people’s welfare

The day also featured a various product launches and presentations. Here are a few that caught my attention:

  • Micello: Google maps for indoors. They won the startup competition that was held in conjunction with the conference.
  • Tropo: API for voice calls and SMS
  • DataStax Brisk: Technology unifying Hadoop, Hive & Cassandra. A new Hadoop distribution powered by Cassandra.
  • Neer: always-on location awareness app from Qualcomm. Privately share location with groups and families.
  • Heritage Health Prize: $3MM prize for predictive modeling around who will require hospitalization (a follow-up on their announcing the prize at Strata)

Overall, it was great to see hundreds of people exploring innovations and opportunities to use data to improve business, technology and society.

TAGGED:conferencesevents
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

data analytics and truck accident claims
How Data Analytics Reduces Truck Accidents and Speeds Up Claims
Analytics Big Data Exclusive
predictive analytics for interior designers
Interior Designers Boost Profits with Predictive Analytics
Analytics Exclusive Predictive Analytics
big data and cybercrime
Stopping Lateral Movement in a Data-Heavy, Edge-First World
Big Data Exclusive
AI and data mining
What the Rise of AI Web Scrapers Means for Data Teams
Artificial Intelligence Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Top BI Events in 2010, Top BI Trends in 2011

5 Min Read

The Transformative Power of Smarter Analytics

2 Min Read

Business Intelligence or Business Analytics?

3 Min Read

Takeaways from the Information Builders Summit

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?