Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics
    How Data Analytics Can Help You Construct A Financial Weather Map
    4 Min Read
    financial analytics
    Financial Analytics Shows The Hidden Cost Of Not Switching Systems
    4 Min Read
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Earthquake Prediction Through Sunspots Part II: common Data Mining Mistakes!
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Data Management > Best Practices > Earthquake Prediction Through Sunspots Part II: common Data Mining Mistakes!
AnalyticsBest PracticesData MiningPredictive AnalyticsStatistics

Earthquake Prediction Through Sunspots Part II: common Data Mining Mistakes!

cristian mesiano
cristian mesiano
7 Min Read
SHARE

While I was writing the last post I was wondering how long before my followers will notice the mistakes I introduced into the experiments.

Let’s start the treasure hunt!

1. Don’t always trust your data: often they are not homogeneous.
In the post I put in relation the quakes in the range time between [~1800,1999] with the respective sunspots distribution.

A good data miner must always check his dataset! you should always ask to yourself whether the data have been produced in a congruent way.

More Read

First Look – Unica
ISPs Use Holistic Big Data Strategy To Shed Customer Cynicism
Experts: Location Intelligence unlocks the power of your data
The Dirty (Not so Secret) Secret of IT Budgets
How geeks are opening up government on the Web (via iGov – The…

While I was writing the last post I was wondering how long before my followers will notice the mistakes I introduced into the experiments.

Let’s start the treasure hunt!

1. Don’t always trust your data: often they are not homogeneous.
In the post I put in relation the quakes in the range time between [~1800,1999] with the respective sunspots distribution.

A good data miner must always check his dataset! you should always ask to yourself whether the data have been produced in a congruent way.

Consider our example: the right question before further analysis should be: “had the quakes magnitude been measured with the same kind of technology along the time?”

I would assume that is dramatically false, but how can check if our data have been produced in a different way along the time?

In this case I thought that in the past, the technology wasn’t enough accurate to measure feeble quakes, so I gathered the quakes by year and by the smallest magnitude: as you can see, it is crystal clear that the data collected before 1965 have been registered in different way respect the next period.

The picture highlights that just major quakes (with magnitude > 6.5) have been registered before 1965.
This is the reason of the outward increasing of quakes!

… In the former post I left a clue in the caption of “quakes distribution” graph 🙂

In this case the best way to clean up the dataset is to filter just quakes having magnitude grater than 6.5.
Let me show you a different way to display the filtered data: “the bubble chart”.
The size of the bubble is representative of the magnitude of the quakes 

The size of the bubble is representative of the number of the quakes
I love the bubble chart because it is really a nice way to plot 3D data in 2D!!
 
2. Sampling the data: are you sampling correctly your data?
In the former post I considered only the quakes registered in USA. 
 
Is it representative of the experiment we are doing?
 
The sunspots should have effects on the entire Earth’s surface, so this phenomena should produce the same effects in every place.
 
…But as everybody knows: there are regions much more exposed to quakes respect other areas where the likelihood to have a quake is very low.
 
So the right way to put in relation the two phenomena is to consider the World distribution of the quakes.
 
3. Don’t rely on the good results on Training Set.
This is maybe the worst joke I played in the post 🙂 I showed you very good results obtained with the support regression model.
 
…Unfortunately I used the entire data set as training set, and I didn’t check the model over a new data set!
 
This kind of mistake in the real scenario, often generates false expectation on your customer.
 
The trained model I proposed seemed very helpful to explain the data set, but as expected it is not able to predict well :(.
 
How can you avoid the overfitting problem? The solution of this problem is not so trivial, but in principle, I think that cross validations techniques are a safe way to mitigate such problem.
 
Here you are the new model:
The left graph shows the Training Set (in Blue the number of quakes per year, in Red the forecasting model).
The graph on the right side shows the behavior of the forecasting model over a temporal range never seen before by the system. The mean error is +/-17 quakes per year.
 
The Magnitude forecasting
(on the left the training set, on the right side the behavior of the forecasting model over the test set).
The mean error is around +/-1.5 degrees.
Considering the complexity of the problem I think that the regressor found works pretty good.
 
Just to have a better feeling of how the regressor is good, I smoothed the data through a median filter:
Moving Median Filtering applied to the Magnitude regressor.
Looking at the above graph, it seems that the regressor is able to follow the overall behavior.
 
As you can see such filtering returns a better understanding of the “goodness” of your models when the function is quite complex.
4. You found out a good regressor, so the phenomena has been explained: FALSE.
You could find whatever “link” between totally independent phenomena … but this link is just a relation between input/output. nothing more, nothing less.
 
As you know this is not the place for theorems, but let me give you a sort of empirical rule:
“The dependency among variables is inverse proportional to the complexity of the regressor”.
 
As usual stay tuned.
Cristian

 

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

protecting patient data
How to Protect Psychotherapy Data in a Digital Practice
Big Data Exclusive Security
data analytics
How Data Analytics Can Help You Construct A Financial Weather Map
Analytics Exclusive Infographic
AI use in payment methods
AI Shows How Payment Delays Disrupt Your Business
Artificial Intelligence Exclusive Infographic
financial analytics
Financial Analytics Shows The Hidden Cost Of Not Switching Systems
Analytics Exclusive Infographic

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

data-driven local SEO benefits
Analytics

Why Local SEO Marketers Need an Extensive Understanding of Analytics

9 Min Read

Welcome CRM blog radio listeners!

1 Min Read
Business Data
AnalyticsBusiness IntelligenceDecision Management

Are Major Optimization Opportunities Hiding in Your Business Data?

9 Min Read
cloud accounting software
Best PracticesBig DataBusiness IntelligenceCloud ComputingData ManagementITSoftware

Why Small Businesses Should Switch to Cloud Accounting Software

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?