Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: The Data Lake: A More Balanced Perspective
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Data Management > Best Practices > The Data Lake: A More Balanced Perspective
Best PracticesBig DataData ManagementHadoop

The Data Lake: A More Balanced Perspective

TamaraDull
TamaraDull
7 Min Read
Image
SHARE

Image

Image

The recent data lake debate with my colleague, Anne Buff, may be over, but the discussion in many organizations is just getting started. What we learned during the debate—and you may be discovering in your own organization—is that it forces the larger discussion of managing growing volumes of data in a big data world. With the onslaught of big data technologies in recent years, organizations are having to look once again at the underlying technologies supporting their data collection, processing, storage, and analysis activities. And right now, the Hadoop-based data lake happens to be a very popular option. 

About the data lake. Before we jump into the “to data lake or not to data lake” discussion, let’s define what a data lake is. Here’s the definition we used during our debate:

More Read

Getting the other 90% of analytic adoption to happen
Using Analytics to Identify New Valuable Customers
Could Data Governance Help the War on Terror?
Data Loss: Hazards, Risks and Strategies for Prevention
How BI & Data Analytics Pros Used Twitter – Meet the Boulder BI Brain Trust

A data lake is a storage repository that holds a vast amount of raw data in its native format, including structured, semi-structured, and unstructured data. The data structure and requirements are not defined until the data is needed.

James Dixon, who identifies himself as the Chief Geek at Pentaho, coined the term data lake and describes it this way:

“If you think of a datamart as a store of bottled water – cleansed and packaged and structured for easy consumption – the data lakeis a large body of water in a more natural state. The contents of the data lake stream in from a source to fill the lake, and various users of the lake can come to examine, dive in, or take samples.”

SWOTing the data lake. To help keep the discussion balanced (since I realize I come to the table with my own biases), I’m using the infamous SWOT diagram to identify some of the key factors associated with a data lake. [Some of you may recognize it from a recent post.] This quick snapshot is designed to help you get the data lake conversation started within your own organization:

Image

  • Strengths
    • Lower costs. A Hadoop-based data lake is largely dependent on open source software and is designed to run on low-cost commodity hardware. So from a software and hardware standpoint, there’s a huge cost savings that cannot be ignored.
    • One-stop data shopping. Hadoop is no respecter of data. It will store and process it all – structured, semi-structured, and unstructured—at a fraction of the cost and time of your existing, traditional systems. There’s much to be gained from having all (or much of) your data in one place – mixing and matching data sets like never before.
  • Weaknesses
    • Data management. We can get hung up talking about the volume, variety, and velocity of (big) data, but equally important to this discussion is being able to govern and manage all of it, regardless of the underlying technologies. For a Hadoop-based data lake, both open source projects and vendor products continue to mature/be developed to support this increasing demand. We’re moving in the right direction—rapidly—but we’re not quite there yet.
    • Security. Hadoop-based security has been a long-time issue, but there’s significant effort and progress being made by the open source community and vendors to support an organization’s security and privacy requirements. While it’s easy to finger wag at this particular “weakness,” it’s important to recognize that the weekly (and almost daily) reports we hear about this-&-that data breach are primarily attacks on existing traditional systems, not these newer big data systems.
  • Opportunities
    • Discovery. This feature allows users to discover the “unknown unknowns.” Unlike existing data warehouses where users are limited with both the questions and answers they can ask and get answers for, with a Hadoop-based data lake, the sky’s the limit. A user can go to the data lake with the same set of questions she had for the data warehouse and get the same, or even better, answers. But she can also discover previously-unknown questions, thus driving her to more answers, and ideally, better insights.
    • Advanced analytics. A lot of software apps include descriptive analytics, showing a user pretty visuals about what’s happened. We’ve had this capability for decades. With big data, however, organizations need advanced analytics—such as prescriptive, predictive, and diagnostic—to really get ahead of the game (and one could even argue to stay in the game). A Hadoop-based data lake provides that opportunity.
  • Threats
    • Status quo. This is not a new threat, especially for software vendors, but it’s a very real threat. The cost and time required to migrate towards these newer big data technologies is not insignificant. This is not a case of hot-swapping technologies while no one is looking. It will also impact the people, processes, and the culture in your organization—if done right.
    • Skills. There is no question that there is a skills shortage for these big data technologies. Even though this shortage can be viewed as a threat to Hadoop adoption, it shouldn’t be seen as a negative. These big data technologies are new, they’re evolving, and there’s a lot of experimentation going on to figure out what’s needed, what’s not, what should stick, what shouldn’t, etc. Thus, it should be no surprise that as our technologies evolve, so will the skills required. We have an opportunity to take what we have and know to a new level and help prepare the next generation to excel in our data-saturated society.

The bottom line. There are well-known weaknesses and threats associated with a data lake, some of which I have highlighted here. We cannot ignore these. But there are also significant strengths and opportunities to explore. If an organization wants to take full advantage of all its data, the data lake can provide the road for you to get there. Just don’t forget to buckle up!

TAGGED:The Big Data MOPS Series
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

sales and data analytics
How Data Analytics Improves Lead Management and Sales Results
Analytics Big Data Exclusive
ai in marketing
How AI and Smart Platforms Improve Email Marketing
Artificial Intelligence Exclusive Marketing
AI Document Verification for Legal Firms: Importance & Top Tools
AI Document Verification for Legal Firms: Importance & Top Tools
Artificial Intelligence Exclusive
AI supply chain
AI Tools Are Strengthening Global Supply Chains
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Image
Best PracticesBig DataData WarehousingHadoopMarket ResearchPrivacy

My 7 Big Data Favorites of 2014

3 Min Read
Image
Big DataMarketingPrivacySocial DataSocial Media Analytics

Are You Kidding Me, Facebook? Oh, You Got It Right

5 Min Read
Image
AnalyticsBig Data

What’s Up with Big Data? Let’s Look at the Trends

7 Min Read
Image
Big DataPrivacy

Is Privacy Dead? And the Survey Says

8 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?