By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData Collective
  • Analytics
    AnalyticsShow More
    data science anayst
    Growing Demand for Data Science & Data Analyst Roles
    6 Min Read
    predictive analytics in dropshipping
    Predictive Analytics Helps New Dropshipping Businesses Thrive
    12 Min Read
    data-driven approach in healthcare
    The Importance of Data-Driven Approaches to Improving Healthcare in Rural Areas
    6 Min Read
    analytics for tax compliance
    Analytics Changes the Calculus of Business Tax Compliance
    8 Min Read
    big data analytics in gaming
    The Role of Big Data Analytics in Gaming
    10 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: Can Big Data Analytics Solve “Too Big to Fail” Banking Complexity?
Share
Notification Show More
Latest News
SMEs Use AI-Driven Financial Software for Greater Efficiency
Artificial Intelligence
data security in big data age
6 Reasons to Boost Data Security Plan in the Age of Big Data
Big Data
data science anayst
Growing Demand for Data Science & Data Analyst Roles
Data Science
ai software development
Key Strategies to Develop AI Software Cost-Effectively
Artificial Intelligence
ai in omnichannel marketing
AI is Driving Huge Changes in Omnichannel Marketing
Artificial Intelligence
Aa
SmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Warehousing > Can Big Data Analytics Solve “Too Big to Fail” Banking Complexity?
AnalyticsData WarehousingExclusiveMapReduceRisk Management

Can Big Data Analytics Solve “Too Big to Fail” Banking Complexity?

paulbarsch
Last updated: 2012/06/19 at 10:23 PM
paulbarsch
4 Min Read
SHARE

Despite investing millions upon millions of dollars in information technology systems, analytical modeling and PhD talent sourced from the best universities, global banks still have difficulty understanding their own business operations and investment risks, much less complex financial markets. Can “Big Data” technologies such as MapReduce/Hadoop, or even more mature technologies like BI/Data Warehousing help banks make better sense of their own complex internal systems and processes, much less tangled and interdependent global financial markets?

Despite investing millions upon millions of dollars in information technology systems, analytical modeling and PhD talent sourced from the best universities, global banks still have difficulty understanding their own business operations and investment risks, much less complex financial markets. Can “Big Data” technologies such as MapReduce/Hadoop, or even more mature technologies like BI/Data Warehousing help banks make better sense of their own complex internal systems and processes, much less tangled and interdependent global financial markets?

British physicist and cosmologist, Stephen Hawking, in 2000 said; “I think the next century will be the century of complexity.” He wasn’t kidding.

More Read

data security in big data age

6 Reasons to Boost Data Security Plan in the Age of Big Data

How Big Data Is Transforming the Maritime Industry
Utilizing Data to Discover Shortcomings Within Your Business Model
Small Businesses Use Big Data to Offset Risk During Economic Uncertainty
The Importance of Data-Driven Approaches to Improving Healthcare in Rural Areas

While Hawking was surely speaking of science and technology, it’s of little doubt he’d also look at global financial markets and financial players (hedge funds, banks, institutional and individual investors and more) as a very complex system.

With hundreds of millions of hidden connections and interdependencies, hundreds of thousands of various hard-to-understand financial products, and millions if not billions of “actors” each with their own agenda, global financial markets are the perfect example of extreme complexity.  In fact, the global financial system is so complex that even attempts to analytically model and predict markets may have worked for a point in time, but ultimately failed to help companies manage their investment risks.

Some argue that complexity in markets might be deciphered through better reporting and transparency.  If every financial firm were required to provide deeper transparency into their positions, transactions, and contracts, then might it be possible for regulators to more thoroughly police markets?

Financial Times writer Gillian Tett has been reading the published work of Professor Henry Hu at University of Texas.  In Tett’s article; “How ‘too big to fail’ banks have become ‘too complex to exist’ (registration required)” she says that Professor Hu argues technological advances and financial innovation (i.e. derivatives) have made financial instruments and flows too difficult to map. Moreover, Hu believes financial intermediaries themselves are so complex that they’ll continually have difficulty making sense of shifting markets.

Is a “too big to fail” situation exacerbated by a “too complex to exist” problem? And can technological advances such as further adoption of MapReduce or Hadoop platforms be considered a potential savior?  Hu seems to believe that supercomputers and more raw economic data might be one way to better understand complex financial markets.

However, even if massive data sets can be better searched, counted, aggregated and reported with MapReduce/Hadoop platforms, superior cognitive skills are necessary to make sense of outputs and then make recommendations and/or take actions based on findings. This kind of talent is in short supply.

It’s even highly likely the scope of complexity in financial markets is beyond today’s technology to compute, sort and analyze. And if that supposition is true, should next steps be to take measures to moderate if not minimize additional complexity?

Questions:

  • Are “Big Data” analytics the savior to mapping complex and global financial flows?
  • Is the global financial system—with its billions of relationships and interdependencies—past the point of understanding and prediction with mathematics and today’s compute power?

TAGGED: banking, big data, complexity, risk management
paulbarsch June 19, 2012
Share this Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

SMEs Use AI-Driven Financial Software for Greater Efficiency
Artificial Intelligence
data security in big data age
6 Reasons to Boost Data Security Plan in the Age of Big Data
Big Data
data science anayst
Growing Demand for Data Science & Data Analyst Roles
Data Science
ai software development
Key Strategies to Develop AI Software Cost-Effectively
Artificial Intelligence

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

data security in big data age
Big Data

6 Reasons to Boost Data Security Plan in the Age of Big Data

7 Min Read
How Big Data Is Transforming the Maritime Industry
Big Data

How Big Data Is Transforming the Maritime Industry

8 Min Read
utlizing big data for business model
Big Data

Utilizing Data to Discover Shortcomings Within Your Business Model

6 Min Read
big data use in small businesses
Big Data

Small Businesses Use Big Data to Offset Risk During Economic Uncertainty

7 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US

© 2008-23 SmartData Collective. All Rights Reserved.

Removed from reading list

Undo
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?