Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Twitter Analytics : Which usage behavior attracts many followers?
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Twitter Analytics : Which usage behavior attracts many followers?
Business IntelligenceData MiningData VisualizationPredictive Analytics

Twitter Analytics : Which usage behavior attracts many followers?

ThemosKalafatis
ThemosKalafatis
7 Min Read
SHARE
This is the first part of a series of posts where Data Mining and Text Mining will be applied to extract potentially useful facts about the usage of Twitter and to draw some conclusions such as what makes a Twitter account interesting enough to other users.
The conclusions that will be presented here are from the analysis of 3651 Twitter accounts and are meant to show how Predictive Analytics can help. Please note that results are shown for informational purposes only.

First, the data used can be summarized with the following table :

You can immediately see problems in the ranges of the data used especially on the number of “followers” and “following”. This is something to be expected since among the users captured were Jack Dorsey (founder of Twitter), Sen. McCain and George Stephanopoulos – users that obviously have a huge amount of followers.

Before finding which usage behavior attracts many followers, one should be able to identify what exactly is a “popular twitter account”. Is it just the absolute number of followers? Perhaps it could be equally important -or at least interesting- to also look at :

1) The followers/following ratio

2) The number of followers per day

For our exa…

More Read

Connecting the Enterprise — With Analytics
Fashion + Analytics + Social = The Perfect Ensemble
BI Excellence or Analytic Horror – You Choose!
How AI Can Improve Your Annotation Quality?
Rules for Assuring Poor Performance
This is the first part of a series of posts where Data Mining and Text Mining will be applied to extract potentially useful facts about the usage of Twitter and to draw some conclusions such as what makes a Twitter account interesting enough to other users.
The conclusions that will be presented here are from the analysis of 3651 Twitter accounts and are meant to show how Predictive Analytics can help. Please note that results are shown for informational purposes only.

First, the data used can be summarized with the following table :

You can immediately see problems in the ranges of the data used especially on the number of “followers” and “following”. This is something to be expected since among the users captured were Jack Dorsey (founder of Twitter), Sen. McCain and George Stephanopoulos – users that obviously have a huge amount of followers.

Before finding which usage behavior attracts many followers, one should be able to identify what exactly is a “popular twitter account”. Is it just the absolute number of followers? Perhaps it could be equally important -or at least interesting- to also look at :

1) The followers/following ratio

2) The number of followers per day

For our example the absolute number of followers was used as the only criterion of a successful Twitter account. The results can be summarized with the following decision tree :

Some usage patterns that raise the chance of having a successful Twitter account are the following :

  • Having a bio is an absolute must : 82.3% of unsuccessful Twitter accounts have their biography information missing.

  • You should provide more than 3 links per 20 tweets and also more than 0.960 updates per day

  • If you don’t want to provide more than 3 links per 20 tweets, then try to post more than 5.857 updates per day.

  • Users that post more than 3 links per 20 tweets but post less than or equal to 0.960 updates per day, will need more than 222.5 days of usage to get an adequate amount of followers.

By using Feature Selection we are able to look also at the relevant importance of each parameter on achieving many followers : Here are the results of Feature Selection from using ChiSquare, GainRatio and InfoGain attribute evaluators.

=== Attribute selection 10 fold cross-validation (stratified), seed: 1 ===

average merit average rank attribute
362.743 +-10.419 1 +- 0 4 numberOfLinks
319.397 +-10.133 2.4 +- 0.49 6 hasBlankProfile?
311.661 +- 8.612 2.6 +- 0.49 7 updatesPerDay
192.525 +- 7.481 4.1 +- 0.3 3 retweetsNumber
178.236 +- 5.963 4.9 +- 0.3 1 elapsedDays
36.148 +- 3.579 6 +- 0 2 otherUsersTalk
17.843 +- 4.475 7 +- 0 5 questionsAsked

average merit average rank attribute
0.1 +- 0.003 1 +- 0 6 hasBlankProfile?
0.042 +- 0.001 2.4 +- 0.49 4 numberOfLinks
0.039 +- 0.002 3.2 +- 0.6 3 retweetsNumber
0.04 +- 0.004 3.4 +- 0.92 7 updatesPerDay
0.025 +- 0.001 5 +- 0 1 elapsedDays
0.011 +- 0.001 6 +- 0 2 otherUsersTalk
0.005 +- 0.001 7 +- 0 5 questionsAsked

average merit average rank attribute
0.082 +- 0.002 1 +- 0 4 numberOfLinks
0.074 +- 0.003 2.1 +- 0.3 6 hasBlankProfile?
0.071 +- 0.002 2.9 +- 0.3 7 updatesPerDay
0.044 +- 0.002 4.1 +- 0.3 3 retweetsNumber
0.041 +- 0.001 4.9 +- 0.3 1 elapsedDays
0.008 +- 0.001 6 +- 0 2 otherUsersTalk
0.004 +- 0.001 7 +- 0 5 questionsAsked

We see that all three attribute evaluators agree that the number of links provided on Tweets and whether the profile of the user is filled in are the two most important parameters in achieving many followers. Notice also that sending messages to other users (otherUsersTalk) and asking questions (questionsAsked) is not as important as one would expect.

The analysis shown above gives many insights but it does not take into account what the users say and how this affects the popularity of a Twitter account. Text Mining will try to give some answers for this question and also identify which keywords on Twitter profiles seem to be associated with many followers.

Link to original post

TAGGED:social network analysistext miningtwitter analysis
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

sales and data analytics
How Data Analytics Improves Lead Management and Sales Results
Analytics Big Data Exclusive
ai in marketing
How AI and Smart Platforms Improve Email Marketing
Artificial Intelligence Exclusive Marketing
AI Document Verification for Legal Firms: Importance & Top Tools
AI Document Verification for Legal Firms: Importance & Top Tools
Artificial Intelligence Exclusive
AI supply chain
AI Tools Are Strengthening Global Supply Chains
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Find Value in Online/Social Text and Sentiment: Free Report, Conferences

2 Min Read

A computer program predicts Viral Tweets

6 Min Read

Some thoughts on advanced analytics in 2010

5 Min Read

Please check out the Text Analytics Summit, Boston, June 12-13

2 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?