Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Big Data: Will Open Source Software Challenge BI & Analytics Software Vendors
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Software > Hadoop > Big Data: Will Open Source Software Challenge BI & Analytics Software Vendors
HadoopPredictive AnalyticsR Programming Language

Big Data: Will Open Source Software Challenge BI & Analytics Software Vendors

hkotadia1
hkotadia1
3 Min Read
SHARE

Predictive Analytics has been billed as the next big thing for almost fifteen years, but hasn’t gained mass acceptance so far the way ERP and CRM solutions have. One of the main reason for this is the high upfront investment required in Software, Hardware and Talent for implementing a Predictive Analytics solution.

Predictive Analytics has been billed as the next big thing for almost fifteen years, but hasn’t gained mass acceptance so far the way ERP and CRM solutions have. One of the main reason for this is the high upfront investment required in Software, Hardware and Talent for implementing a Predictive Analytics solution.

As a result, only a handful of very large enterprises such as mega banks or top telecom companies have made the required investments and have benefited from power of Predictive Modeling and advanced Statistical techniques that are in existence for well over five decades.

More Read

predictive analytics
Predictive Analytics: 4 Primary Aspects of Predictive Analytics
Predictive Analytics Methodologies Could Be The Secret To Great Emails
What data mining software to buy?
Help Nonprofits and NGOs at Data Without Borders DataDives
Quality and warranty cost reduction strategies

Most of the other companies have not been able to levarage power of business analytics as they cannot afford investing in specialized harware, database and BI/Analytics software applications being marketed by enterprise software vendors such as SAS and Teradata.

Well, this is about to change – thanks to technologies such as Apache Hadoop (which supports Big Data distributed applications under a free license), HBase (an open source, non-relational/distributed database) and the freely available R programming language (which is part of the GNU project).

Using R, HBase and Hadoop, it is possible to build cost-effective and scalable Big Data Analytics solutions that match or even exceed the functionality offered by costly proprietary solutions from leading BI/Analytics software vendors at a fraction of the cost. And since R programming language is a freely available Open Source Software, users can leverage work done by others for specific analytics functionality and don’t have to re-invent wheel by rewriting the code. This reduces cost of developing analytics solution significantly.

Established BI and Analytics software vendors have no option other than offering their solution under SaaS (Software as a Service) model so that it is cost effective for their customers to implement analytics solution without requiring large upfront investment. This is all the more important for Big Data as the field is evolving rapidly. And if any BI or Analytics software vendor fails to adapt to this changing technological environment, they risk losing their market share.

 

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

AI role in medical industry
The Role Of AI In Transforming Medical Manufacturing
Artificial Intelligence Exclusive
b2b sales
Unseen Barriers: Identifying Bottlenecks In B2B Sales
Business Rules Exclusive Infographic
data intelligence in healthcare
How Data Is Powering Real-Time Intelligence in Health Systems
Big Data Exclusive
intersection of data
The Intersection of Data and Empathy in Modern Support Careers
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Image
AnalyticsCloud ComputingCommentaryData MiningExclusiveMapReducePredictive AnalyticsRisk ManagementSentiment AnalyticsText Analytics

Text Analytics for Tracking Executive Hubris?

5 Min Read
big data crisis management
AnalyticsBig DataData ManagementITNewsPredictive Analytics

Big Data: A Natural Solution for Disaster Relief

5 Min Read

Top 8 Big Data Trends That Marketers Should Care About

11 Min Read

Oracle’s Big Data Appliance to include R

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?