Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Are Data Scientists Overpaid?
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Data Management > Culture/Leadership > Are Data Scientists Overpaid?
Big DataCulture/LeadershipData MiningInside CompaniesMarket Research

Are Data Scientists Overpaid?

vincentg64
vincentg64
4 Min Read
SHARE

data scientists

data scientists

(This post is a response to “Are Data Scientists Overpaid?” – ed. note)
The answer? Fake data scientists are overpaid, real ones underpaid.
Read Fake Data Science and Horizontal vs. Vertical Data Scientist. Many real data scientists are actually unemployed and can’t find a job. The number of applicants per job ad ranges from 20 to 500 – you can check these numbers yourself on LinkedIn, entering the keyword “data science” in the “Job Search” box (top right corner, select “Jobs” as search criterion).
In my case, as a data scientist, I generate leads for marketers. A good quality lead is worth $40. The costs associated with producing one lead is $10. It requires data science to efficiently generate a large number of highly relevant leads, purchasing the right traffic, organic growth optimization etc. If I can’t generate at least 10,000 leads a year, nobody will buy due to low volume. If my leads don’t convert in actual revenue and produce ROI for the client, nobody will buy. 
Also, thanks to data science, I can sell leads for a lower price than competitors – much less than $40. For instance our newsletter open rate went from 8% to 24%, significantly boosting revenue and lowering costs. We also reduced churn to a point where we actually grow, all of this thanks to data science. Among the techniques used: improving user, client and content segmentation; optimizing delivery rate from an engineering point of view, eliminating inactive members, detecting and killing spammers, and optimizing a very various mix of newsletter metrics (keywords in subject line, HTML code, content blend, ratio of commercial vs. organic content, keyword variance to avoid burn out, first sentence in each message, levers associated with re-tweets, word-of-mouth and going viral, etc.) to increase total clicks, leads and conversions delivered to clients. Also, we need to predict sales and revenues – another data science exercise.
Am I overpaid if I can deliver the leads with a higher margin and lower price? No, I’m just smarter than competition. I’ve also developed a business model that is not subject to click fraud, thus avoiding losses and litigation. At the end of the year, my revenue after cost is far above the $133k mentioned by ZDNet, yet I don’t feel overpaid, and my clients don’t feel that our service is expensive – if they did they would stop working with us.
Rule of thumb: You are overpaid if your company makes less than 3 times your salary, from your work. No matter how much or little you are paid. By making money, I mean revenue generation or cost savings. By revenue, I mean extra money resulting e.g. from optimizing ad campaigns. Not always easy to measure the financial lift that an employee brings to a company.
TAGGED:business intelligenceData ScienceData Scientist
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

Diverse Research Datasets
The 5 Best Platforms Offering the Most Diverse Research Datasets in 2026
Big Data Exclusive
macro intelligence and ai
How Permutable AI is Advancing Macro Intelligence for Complex Global Markets
Artificial Intelligence Exclusive
warehouse accidents
Data Analytics and the Future of Warehouse Safety
Analytics Commentary Exclusive
stock investing and data analytics
How Data Analytics Supports Smarter Stock Trading Strategies
Analytics Exclusive

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

Artificial IntelligenceBig DataBusiness IntelligenceData ScienceExclusiveFeatured

Why AI Cannot Survive Without Big Data

8 Min Read
LITEBI: Cloud Computing Business Intelligence
Business Intelligence

Business Intelligence & General Management I

6 Min Read
business intelligence benefits for companies trying to get through the pandemic
Analytics

Use a Data Strategy to Make Your Startup Profitable

7 Min Read
benefits of serverless Kubernetes for data scientists
Data Science

Serverless Kubernetes Has Become Invaluable to Data Scientists

9 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?