Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Predictive Analytics: 8 Things to Keep in Mind (Part 6)
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Predictive Analytics: 8 Things to Keep in Mind (Part 6)
Business IntelligenceData MiningPredictive Analytics

Predictive Analytics: 8 Things to Keep in Mind (Part 6)

Editor SDC
Editor SDC
6 Min Read
SHARE

Theme 6: Delivering the prediction at the point of decision is critical


In 2007, my wife worked as a hospitalist in Charlotte.  Around that time, I noticed a strange pre-work ritual she followed. She took printouts of a few pages from the Wal-Mart website before going to work.  The behavior was surprising and one day I asked her about the mysterious printouts. It turns out that she was printing out the list of generic drugs that were covered in Wal-Mart’s $4 prescription plan.

Like most physicians, she used to struggle with the fact that some of her patients were not complying with their medications as they were not able to afford the medicines she was prescribing. Wal-Mart had introduced a plan, where they sold some common generic drugs at $4 per prescription.  A lot of patients were able to afford the Wal-Mart medicines and it was popular amongst the doctors to prescribe from the Wal-Mart covered drugs. However there was one issue. The Wal-Mart covered drug list was not integrated with the Epocrates system, the mobile clinical decision support software that most doctors use to verify drug dosage and interactions prior to writing…

More Read

BI Software Makes Money
Taking the Mystery Out of Big Data
Reality Mining – Too Much Personalization?
Deep Feature Synthesis Is the Future of Machine Learning
The Real Definition of Business Intelligence [VIDEO]

Theme 6: Delivering the prediction at the point of decision is critical


In 2007, my wife worked as a hospitalist in Charlotte.  Around that time, I noticed a strange pre-work ritual she followed. She took printouts of a few pages from the Wal-Mart website before going to work.  The behavior was surprising and one day I asked her about the mysterious printouts. It turns out that she was printing out the list of generic drugs that were covered in Wal-Mart’s $4 prescription plan.

Like most physicians, she used to struggle with the fact that some of her patients were not complying with their medications as they were not able to afford the medicines she was prescribing. Wal-Mart had introduced a plan, where they sold some common generic drugs at $4 per prescription.  A lot of patients were able to afford the Wal-Mart medicines and it was popular amongst the doctors to prescribe from the Wal-Mart covered drugs. However there was one issue. The Wal-Mart covered drug list was not integrated with the Epocrates system, the mobile clinical decision support software that most doctors use to verify drug dosage and interactions prior to writing the prescriptions.  At the time of writing the prescription, the doctor did not know whether the specific drug was covered within the Wal-Mart plan, unless she chose to make the extra effort and carry a printout of covered drugs and refer to it prior to writing every prescription.  A great idea suddenly became less attractive to act upon, as the right information was not made available at the point of decision.  I refer to this as the last mile decision delivery problem of predictive analytics projects.

Most of the effort in analytics projects is spent on defining the problem, aggregating data, building and testing models. Getting the information of the model to the decision maker at the point of decision is at many times an afterthought.  However, the benefits of the project are dependent on solving this critical last mile problem.

In my experience decision delivery is challenging as it requires cross-organizational coordination. Successful analytics projects are a partnership between the analytics, business and IT groups.  The analytics group needs to work very closely with decision makers or the end users to put the analysis results in context of the decision maker’s workflow.  The actual delivery of the information is done through a mobile handheld device to a distributed sales force, CRM system integration for call centers or executive dashboard delivery through reporting system integration. All of them require close collaboration with the IT group which has to take the results of a predictive model and integrate it with the relevant front end or reporting infrastructure.  Then there is end-user training to ensure the end-users know what to do with the new information. The program management effort required to execute such a cross-organization initiative is significant and very often not anticipated or planned by the project sponsors.

A good program manager is critical to most complex predictive analytics projects. He/she is able to coordinate the various stakeholders to align on problem definition, outcome format, technology integration and training to drive user adoption of predictive analytics solution. Something to keep in mind as you plan your predictive analytics initiatives.

Have you seen predictive analytics projects getting derailed due to lack of coordination  between various groups within the organization or under investment in program management resources?

PS: Last year Wal-Mart solved its last mile problem and integrated the covered $4 prescription drug list into the Epocrates application.

Previous parts of the series are available here: part 1, part 2, part 3, part 4, and part 5

Link to original post

TAGGED:analyticsbusiness intelligencedata miningintegration
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

sales and data analytics
How Data Analytics Improves Lead Management and Sales Results
Analytics Big Data Exclusive
ai in marketing
How AI and Smart Platforms Improve Email Marketing
Artificial Intelligence Exclusive Marketing
AI Document Verification for Legal Firms: Importance & Top Tools
AI Document Verification for Legal Firms: Importance & Top Tools
Artificial Intelligence Exclusive
AI supply chain
AI Tools Are Strengthening Global Supply Chains
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

big data scientists build bridges
AnalyticsPredictive Analytics

Big Data Scientists Are Bridge Builders

4 Min Read
Augmented Reality and AI
Artificial IntelligenceBig DataBusiness IntelligenceExclusiveKnowledge Management

AI And Augmented Reality Merge For New Business Solutions

7 Min Read
big data supply chain management
Big Data

Big Data, Analytics, and the Changing Face of Supply Chain Management

5 Min Read

Request to Complete Howard Dresner’s BI Market Survey

3 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?