Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Apache Drill vs. Apache Spark: What’s The Right Tool for the Job?
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Apache Drill vs. Apache Spark: What’s The Right Tool for the Job?
Big DataData MiningHadoopR Programming LanguageSQLUnstructured Data

Apache Drill vs. Apache Spark: What’s The Right Tool for the Job?

kingmesal
kingmesal
5 Min Read
Image
SHARE

Image

If you’re looking to implement a big data project, you’re probably deciding whether to go with Apache Spark SQL or Apache Drill. This article can help you decide which query tool you should use for the kinds of projects you’re working on.

Image

More Read

Reminder: DSC 2009 abstract submissions due March 15
Applying Big Data for Mass Customization
Twitter Mayhem
CRAN R 2.9.0 now available
6 Ingenious Data-Driven Marketing Ideas for CBD Brands

If you’re looking to implement a big data project, you’re probably deciding whether to go with Apache Spark SQL or Apache Drill. This article can help you decide which query tool you should use for the kinds of projects you’re working on.

Spark SQL

Spark SQL is simply a module that lets you work with structured data using Apache Spark. It allows you to mix SQL within your existing Spark projects. Not only do you get access to a familiar SQL query language, you also get access to powerful tools such as Spark Streaming and the MLlib machine learning library.

Spark uses a special data structure called a DataFrame that represents data as named columns, similar to relational tables. You can query the data from Scala, Python, Java, and R. This enables you to perform powerful analysis of your data rather than just retrieving it. But it’s even more powerful when extracting data for use with the machine learning library. With MLlib, you can perform sophisticated analyses, detect credit card fraud, and process data coming from servers.

As with Drill, Spark SQL is compatible with a number of data formats, including some of the same ones that Drill supports: Parquet, JSON, and Hive. Spark SQL can handle multiple data sources similar to the way Drill can, but you can funnel the data into your machine learning systems mentioned earlier. This gives you a lot of power to analyze multiple data points, especially when combined with Spark Streaming. Spark SQL serves as a way to glue together different data sources and libraries into a powerful application.

Apache Drill

Apache Drill is a powerful database engine that also lets you use SQL for queries. You can use a number of data formats, including Parquet, MongoDB, MapR-DB, HDFS, MapR-FS, Amazon S3, Azure Blob Storage, Google Cloud Storage, Swift, NAS, and more.

You can use data from multiple data sources and join them without having to pull the data out, making Drill especially useful for business intelligence.

The ability to view multiple types of data, some of which have both strict and loose schema, as well as being able to allow for complex data models, might seem like a drag on performance. However, Drill uses schema discovery and a hierarchical columnar data model to treat data like a set of tables, independently of how the data is actually modeled. 

Almost all existing BI tools, including Tableau, Qlik, MicroStrategy, Spotfire, SAS, and even Excel, can use Drill’s JDBC and ODBC drivers to connect to it. This makes Drill very useful for people already using BI and SQL databases to move up to big data workloads using tools they’re already familiar with.

Drill’s JDBC driver lets BI tools access Drill. JDBC lets developers query large datasets using Java. This has a similar advantage that using ANSI SQL does: lots of developers are already familiar with Java and can transfer their skills to Drill.

Easy Data Access in Drill

One of Drill’s biggest strengths is its ability to secure databases at the file level using views and impersonation.

Views within Drill are the same as those within relational databases. They allow a simplified query to hide the complexities of the underlying tables. Impersonation allows a user to access data as another user. This enables fine-grained access to the raw data when other members of your team should not be able to view sensitive or secure data.

Views and impersonation are beyond the scope of Apache Spark.

Conclusion

So which query engine should you choose? As always, it depends. If you’re mainly looking to query data quickly, even across multiple data sources, then you should look into Drill. If you want to go beyond querying data and work with data in more algorithmic ways, then Spark SQL might be for you. You can always test both out by playing around in your own Sandbox environment, which lets you play around with these powerful systems on your own machine.

TAGGED:big data
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

image fx (2)
Monitoring Data Without Turning into Big Brother
Big Data Exclusive
image fx (71)
The Power of AI for Personalization in Email
Artificial Intelligence Exclusive Marketing
image fx (67)
Improving LinkedIn Ad Strategies with Data Analytics
Analytics Big Data Exclusive Software
big data and remote work
Data Helps Speech-Language Pathologists Deliver Better Results
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Data Sprawl with a Data Catalog
Best PracticesBig DataBusiness IntelligenceData ManagementExclusiveIT

Heal the Heartbreak of Data Sprawl with a Data Catalog

5 Min Read

Big Data, Big Mistakes?

7 Min Read
manufacturing workforce
Big DataData ManagementWorkforce Analytics

How Did Big Data Create a Modern Day Manufacturing Workforce?

4 Min Read
advances in data lakes
Big DataExclusive

Data Lake Details: All About Cloudwick’s CDL

9 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?