By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData Collective
  • Analytics
    AnalyticsShow More
    data science anayst
    Growing Demand for Data Science & Data Analyst Roles
    6 Min Read
    predictive analytics in dropshipping
    Predictive Analytics Helps New Dropshipping Businesses Thrive
    12 Min Read
    data-driven approach in healthcare
    The Importance of Data-Driven Approaches to Improving Healthcare in Rural Areas
    6 Min Read
    analytics for tax compliance
    Analytics Changes the Calculus of Business Tax Compliance
    8 Min Read
    big data analytics in gaming
    The Role of Big Data Analytics in Gaming
    10 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: Is the Purpose of Analytics Just to Turn a Buck?
Share
Notification Show More
Latest News
SMEs Use AI-Driven Financial Software for Greater Efficiency
Artificial Intelligence
data security in big data age
6 Reasons to Boost Data Security Plan in the Age of Big Data
Big Data
data science anayst
Growing Demand for Data Science & Data Analyst Roles
Data Science
ai software development
Key Strategies to Develop AI Software Cost-Effectively
Artificial Intelligence
ai in omnichannel marketing
AI is Driving Huge Changes in Omnichannel Marketing
Artificial Intelligence
Aa
SmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Data Management > Best Practices > Is the Purpose of Analytics Just to Turn a Buck?
AnalyticsBest PracticesBig DataCollaborative DataCulture/LeadershipExclusiveMobilityModelingPredictive AnalyticsSocial Data

Is the Purpose of Analytics Just to Turn a Buck?

paulbarsch
Last updated: 2013/07/13 at 3:21 AM
paulbarsch
4 Min Read
Image
SHARE

Image

 

Image

 

More Read

Image

4 Business Risks That Might Prevent Big Data ROI

3 Big Data Potholes to Avoid
Is Cloud Sameness Dangerous to Competitive Advantage?
Wasted Breath: Data Alone Won’t Convince
Less Dogma Equals Better Decision Making

analyticsAsk just about any company why they are jumpstarting an analytics program and you’ll undoubtedly hear phrases like “We need to reduce costs” or “We must find new customers” or even “We need to shorten our product time-to-market.” And while these are all definitely sound reasons to initiate and nurture an analytics program, there are other rationales beyond “business value” for architecting and implementing an analytical infrastructure and applications.

A recent Financial Times article mentions how top global business schools are trying to get away from primacy of “Increasing Shareholder Value.”  Indeed, MBA students around the world are generally taught that increasing shareholder value is job number one, and they should do so by cutting costs wherever possible, expanding revenue streams, improving employee productivity and more. 

For MBAs, the focus on short term shareholder value is mostly because it’s uncomplicated. “If we can skip the discussions of corporate purpose by stipulating that corporations exist to create shareholder value, then it makes it easier to get down to the more technical details of how we get there,” says Gerald Davis, management professor at University of Michigan.

Bill George, former CEO of Medtronic, has long counseled companies to look past shareholder value as the sole criterion of business success. Instead he says business leaders should consider additional stakeholders of customers, suppliers, employees, and communities when making decisions.

As a business analytics professional, it’s often too easy for me to think about analytics in the business context (i.e. how they can reduce costs, increase profits, speed time-to-market, improve employee productivity etc.) In fact, the mission for analytics can easily cross over from the land of shareholder value to safeguarding and improving the well-being and long term sustainability of other stakeholders.

Examples include:

  • National weather services use Hadoop and NoSQL databases to collect data points from global weather stations and satellites, feed data into predictive climate models, and then recommend courses of action to citizens and governments
  • Police departments use analytics to predict “hotspots” of criminal activity based on past incidents to help prevent crime and if not, nab lawbreakers in the act.
  • Governments use real time data collection and analytics to produce readings on local and global air pollution so that citizens can make informed choices about their daily activities.
  • Governments collect and share data on crime and terrorism (and as we’ve seen lately, sometimes a little too well!)
  • Analytics speeds aid relief efforts when natural disasters occur
  • Predictive analytics tracks disease outbreaks in real time
  • Access to open data sets and analytics may help farmers in Africa and elsewhere lift millions out of poverty by producing better crop yields
  • Data scientists are encouraged to share their analytic skills with charities
  • Companies can track food products with supply chain analytics as they move from “field to fork” to promote food safety

These are just some examples of the value of analytics beyond shareholder value creation, and there are hundreds more.

Business schools across the globe are revamping their MBA curriculum to focus on shareholder value to a lesser extent and more on sustainability and value for all stakeholders. Perhaps it’s time to look at the worth analytics can bring through a broader and more significant lens of improving societal value, and not just shareholder profits.

(Analytics for bucks? / shutterstock)

TAGGED: risky business
paulbarsch July 13, 2013
Share this Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

SMEs Use AI-Driven Financial Software for Greater Efficiency
Artificial Intelligence
data security in big data age
6 Reasons to Boost Data Security Plan in the Age of Big Data
Big Data
data science anayst
Growing Demand for Data Science & Data Analyst Roles
Data Science
ai software development
Key Strategies to Develop AI Software Cost-Effectively
Artificial Intelligence

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

Image
Big DataBusiness IntelligenceRisk Management

4 Business Risks That Might Prevent Big Data ROI

5 Min Read
Image
Big Data

3 Big Data Potholes to Avoid

5 Min Read
Image
Uncategorized

Is Cloud Sameness Dangerous to Competitive Advantage?

5 Min Read
Image
CommentaryExclusive

Wasted Breath: Data Alone Won’t Convince

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US

© 2008-23 SmartData Collective. All Rights Reserved.

Removed from reading list

Undo
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?