Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Analytic truth and myth
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Predictive Analytics > Analytic truth and myth
Predictive Analytics

Analytic truth and myth

JamesTaylor
JamesTaylor
6 Min Read
SHARE

Copyright © 2009 James Taylor. Visit the original article at Analytic truth and myth.

Alison Bolen posted a nice list of analytic truths, or perhaps myths, on the SAS blog today and asked what people thought. I was, of course, unable to resist:

  1. To make analytics successful, the CEO has to have a personal interest in it. MYTH
    While it is true that the only companies I see who have made it to what Tom Davenport called “analytic competitor” are those that have CEOs who are involved with the analytics, I do not believe that CEO involvement is central to all analytics success. Line-of-business managers and other executives can successfully drive analytic projects; I just don’t think you are going to get company-wide adoption without the CEO.
  2. Analytical organizations have to be positioned in a central high-power position. MYTH
    I think that centralized analytics are a consequence of success not a pre-requisite for it. As you get some localized success you will want to bring it together to drive more success but I don’t believe a central group is needed or event desirable to start.
  3. Every company in a competitive environment needs analytics to be successful. TRUTH
    As I have …

More Read

DIALOG The roadmap
Patterns patterns everywhere
Decision management can improve warranty claims and customer experience
Customer Centricity Strategy #1 – Customer Analytics
Consuming Output for Further Processing



Copyright © 2009 James Taylor. Visit the original article at Analytic truth and myth.

Alison Bolen posted a nice list of analytic truths, or perhaps myths, on the SAS blog today and asked what people thought. I was, of course, unable to resist:

  1. To make analytics successful, the CEO has to have a personal interest in it. MYTH
    While it is true that the only companies I see who have made it to what Tom Davenport called “analytic competitor” are those that have CEOs who are involved with the analytics, I do not believe that CEO involvement is central to all analytics success. Line-of-business managers and other executives can successfully drive analytic projects; I just don’t think you are going to get company-wide adoption without the CEO.
  2. Analytical organizations have to be positioned in a central high-power position. MYTH
    I think that centralized analytics are a consequence of success not a pre-requisite for it. As you get some localized success you will want to bring it together to drive more success but I don’t believe a central group is needed or event desirable to start.
  3. Every company in a competitive environment needs analytics to be successful. TRUTH
    As I have said before, your data is your one truly defensible competitive edge, and if you are not using it (which takes analytics) then you are stupid foolish incompetent missing out.
  4. Analytical expertise can be out-sourced/in-sourced/off-shored. TRUTH BUT…
    While you can and should bring in outside expertise you need to have a basic understanding of the power of analytics in-house. Someone must grasp the potential for analytics and understand the business, even if they cannot develop the models.
  5. Getting data and technology in place is a long and cumbersome process. TRUTH
    It also cannot be rushed and should be done incrementally with each stage developing additional capability that is put to work adding value. Don’t build all the data and technology infrastructure before you start delivering value. And start with the decision in mind – build what you need to improve a specific decision.
  6. Without data and technology you cannot do analytics. TRUTH and axiomatic
  7. Analytics is a thing mainly insiders and experts understand, and vice versa. TRUTH
    And this is a challenge, see #8
  8. Communication of analytics is more important than analytical people think. TRUTH with bells on
    This is so true it is hard to over-emphasize. Analytics people are often terrible at this – talking about statistical measures not business measures, over-explaining the approach and under-explaining the consequences, etc., etc. If you can improve the skills of your analytic team in only one area, this is it.
  9. Analytics only should do things which have a measurable impact. TRUTH
    And measurable in business terms, not mathematical or statistical ones. Business people don’t care about lift curves, they care about results. Remember this.
  10. Analytics mainly is applicable in retail/standardized environments. MYTHish
    Any business that has large numbers of repeatable decisions – operational decisions – can and should be using analytics to improve them. This implies a repeatable environment and one with lots of participants so retail or B2C environments are more common for sure. But companies can have many thousands of partners or locations, parts and suppliers so decisions about these things can be analytically enhanced also even in B2B environments.

Great list. Thanks Alison.


Link to original post

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

data intelligence in healthcare
How Data Is Powering Real-Time Intelligence in Health Systems
Big Data Exclusive
intersection of data
The Intersection of Data and Empathy in Modern Support Careers
Big Data Exclusive
blockchain for ICOs
The Role of Blockchain in ICO Fundraising
Blockchain Exclusive
ai in business
How AI Helps Businesses Discover Specialized Niches
Exclusive Marketing

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Will Data Drive Decision Improvement?

6 Min Read
Image
Predictive Analytics

Data Does Not Equal Intelligence: Predictive Analytics in the Enterprise

5 Min Read

Wolfram Alpha Revisited

7 Min Read

First Look – Incanto

7 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?