Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Is the Mother of All Black Swans Coming?
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Predictive Analytics > Is the Mother of All Black Swans Coming?
Predictive Analytics

Is the Mother of All Black Swans Coming?

PaulBarsch1
PaulBarsch1
4 Min Read
SHARE

dragon kingWhether you like Nassim Taleb’s writing style or not, his books and the ideas within are worth careful study.

For example, a key theme of Nassim Taleb’s “The Black Swan” is to pay close attention to the possibility of the rare event, the outlier that brings devastating consequence. Taleb forcefully and intelligently argues that these outliers are much more common than we think (1 in 100 year floods happen every 3-5 years) especially when we base our statistical analysis on the assumptions of a normal distribution of data and independence.

However, some interesting research by Didier Sornette at the Swiss Federal Institute of Technology shows that while power laws can explain some of the extreme events that have taken place in history, there are some extreme outliers that even defy classic power laws.

A post in MIT’s Technology Review blog cites the following:

More Read

What is R?
Driving harmonization for competitive advantage
An Interesting Observation
SAS and the art and science of better
Big Data Robots: Are They After Your Job?

“Sornette gives as an example the distribution of city sizes in France, which follows a classic power law, meaning that there are many small cities and only a few large ones. On a log-to-log scale, this distribution gives a straight line–except for Paris, which is an outlier and many times larger than it ought to be if …


dragon kingWhether you like Nassim Taleb’s writing style or not, his books and the ideas within are worth careful study.

For example, a key theme of Nassim Taleb’s “The Black Swan” is to pay close attention to the possibility of the rare event, the outlier that brings devastating consequence. Taleb forcefully and intelligently argues that these outliers are much more common than we think (1 in 100 year floods happen every 3-5 years) especially when we base our statistical analysis on the assumptions of a normal distribution of data and independence.

However, some interesting research by Didier Sornette at the Swiss Federal Institute of Technology shows that while power laws can explain some of the extreme events that have taken place in history, there are some extreme outliers that even defy classic power laws.

A post in MIT’s Technology Review blog cites the following:

“Sornette gives as an example the distribution of city sizes in France, which follows a classic power law, meaning that there are many small cities and only a few large ones. On a log-to-log scale, this distribution gives a straight line–except for Paris, which is an outlier and many times larger than it ought to be if it were to follow the power law.”

The article also mentions that the city of London also follows this same example.

Sornette calls these extreme outliers “Dragon Kings.” A sobering commentary from the article ensues; “(The) seemingly ubiquitous presence of these dragon kings in all kinds of data sets means that extreme events are significantly more likely than power laws suggest.”

This in turn suggests that the Mother of all Black Swans might be unaccounted for in your data set. And if this is the case, does this mean that we cannot only not predict these extreme events, but that preparation is futile?

I would love to hear your thoughts!


Link to original post

TAGGED:black swannassim taleb
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

data analytics and truck accident claims
How Data Analytics Reduces Truck Accidents and Speeds Up Claims
Analytics Big Data Exclusive
predictive analytics for interior designers
Interior Designers Boost Profits with Predictive Analytics
Analytics Exclusive Predictive Analytics
big data and cybercrime
Stopping Lateral Movement in a Data-Heavy, Edge-First World
Big Data Exclusive
AI and data mining
What the Rise of AI Web Scrapers Means for Data Teams
Artificial Intelligence Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Fight Back Against Black Swan Fatigue

5 Min Read

How They Fit Together: Bell Curves, Bayesian Inference and Black Swans

5 Min Read

Of Baby Black Swans and the Race to Zero

5 Min Read

100 Petabytes of Data in Poop?

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?