Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Patterns Recur In Analytics Just Like In Nature
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Patterns Recur In Analytics Just Like In Nature
AnalyticsBig Data

Patterns Recur In Analytics Just Like In Nature

BillFranks
BillFranks
6 Min Read
SHARE

I have always loved science and math, and that’s why I got into statistics and focused on analytics for a career. One thing that has always fascinated me is how certain patterns show up again and again in different places across nature and mathematics. When looking at two seemingly unrelated topics, it suddenly becomes clear that there is actually quite a strong linkage between the two and that they are simply different examples of the same underlying concept.

Contents
A Recurring Pattern in Analytics“Clumpy” Data and Customer Purchasing“Lumpy” Data and Store SalesYou Say Clumpy, I Say Lumpy

I have always loved science and math, and that’s why I got into statistics and focused on analytics for a career. One thing that has always fascinated me is how certain patterns show up again and again in different places across nature and mathematics. When looking at two seemingly unrelated topics, it suddenly becomes clear that there is actually quite a strong linkage between the two and that they are simply different examples of the same underlying concept.

One example of this is the Fibonacci sequence which shows up in nature regularly in places such as the way sea shell spirals grow and the pattern of seeds in a sunflower. I recently came across a terrific example of the concept of similar patterns at work within the realm of data and analytics.

More Read

Client Scheduling Data: How Past Behavior Predicts The Future
Client Scheduling Data: How Past Behavior Predicts The Future
Upcoming Webinar: Real-time, Big-data Analytics
Duck Duck Kumo?
Predictive Analytics Asset Valuations: New Opportunities or the Start of Another Futures Bubble?
Will the Cloud Replace In-House Big Data Centers?

A Recurring Pattern in Analytics

I recently took part in an event (see a summary video here) where professor Eric Bradlow of Wharton gave a presentation about research he’s done on what he calls “clumpiness” in customer purchasing. Eric and I got excited about a tie between Eric’s formal work on customer clumpiness and some work my team had done a few years prior around store sales forecasts. My team had effectively identified a very similar situation in a totally different setting.

This was an important realization because I consider it to be a powerful reinforcement when formal research and real world project work independently confirm the same concept. The two situations were not directly comparable – individual customer purchases and store level product sales – but they did share some similar mathematics under the hood.

“Clumpy” Data and Customer Purchasing

The central theme of Eric Bradlow’s research and talk was that while some customers purchase in a consistent pattern over time, others are quite clumpy. Some customers will not buy for a period of time, but then buy in rapid succession before pausing again. He likened this pattern to binge watching on a streaming content service.

Far from being just an academically interesting pattern, his research shows that accounting for the “clumpiness” of a customer’s purchasing will increase the power of standard customer behavioral models. The recommendation is, therefore, to embrace and account for clumpy purchasing instead of just making a note of its existence. His research focused upon a method to do that.

“Lumpy” Data and Store Sales

In our case, we were hired by a large retailer to help them better forecast what they called “lumpy demand” in some of their products. The standard forecasting algorithms all make certain assumptions about sales patterns, including a fairly regular cadence of purchasing, and many of this retailer’s products broke those assumptions. This was leading to forecasts that were not as accurate as expected or required.

In the retailer’s case, imagine a product like floor tiles. Not a single box of a given tile will sell for a number of weeks or months. However, when it does sell, many boxes will be sold to support a kitchen or bath remodel. Therefore, it is a tricky balance to figure out how much inventory to carry on hand and when to require a special order. There were a variety of factors to take into account including inventory carrying cost and the frequency and magnitude of the lumpy sales, among others.

You Say Clumpy, I Say Lumpy

As Eric Bradlow found for customer purchasing, we had also found that it was possible to account for the lumpy demand of products in a store and provide better forecasts. By accounting for the lumpiness in sales, the models were able to turn what had been noise in the data into information utilized by the models. Eric Bradlow called it “clumpy”, we called it “lumpy”, but we were all describing the same principal and seeing the same general pattern!

This experience led me to consider where else it would be possible to identify the same fundamental patterns across different types of data and analytics. I believe it is more than an academic exercise. If a certain pattern has been handled already in another context, we can potentially vastly shortcut our effort to handle it within a new context.

In the end, I don’t care if you call it clumpy, lumpy, or something else. What I do care about is that you look for the pattern in your analytics efforts and make use of what has already been done to deal with it. Much like the Fibonacci sequence appears repeatedly in nature, there are recurring patterns in data that, once recognized, can improve both our analytics and our efficiency in creating them.

Share This Article
Facebook Pinterest LinkedIn
Share
ByBillFranks
Follow:
Bill Franks is Chief Analytics Officer for The International Institute For Analytics (IIA). Franks is also the author of Taming The Big Data Tidal Wave and The Analytics Revolution. His work has spanned clients in a variety of industries for companies ranging in size from Fortune 100 companies to small non-profit organizations. You can learn more at http://www.bill-franks.com.

Follow us on Facebook

Latest News

financial data
Engineering Trust into Enterprise Data with Smart MDM Automation
Big Data Exclusive
christina wocintechchat com 6dv3pe jnsg unsplash
How CIS Credentials Can Launch Your AI Development Career
Exclusive News
big data analytics in transporation
Turning Data Into Decisions: How Analytics Improves Transportation Strategy
Analytics Big Data Exclusive
AI and fund manager software
AI And The Acceleration Of Information Flows From Fund Managers To Investors
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Finally factor of speech clearence (C50) and still more to go.

1 Min Read
Image
Big Data

How Big Data and the Internet of Things Make Our World Smarter

6 Min Read

Food Data : The next target of Massive Analytics

4 Min Read

A Strategic Mistake With Big Data

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?