Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: What’s an IT Data Warehouse? And Why Do You Need One?
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Warehousing > What’s an IT Data Warehouse? And Why Do You Need One?
Data Warehousing

What’s an IT Data Warehouse? And Why Do You Need One?

numerify
numerify
8 Min Read
SHARE

In the course of running IT operations for your business, systems collect a wealth of data – data that can yield useful insights to help understand how you deliver services, lower costs and drive more innovation. By analyzing this data effectively, you can get a 360-degree view of the IT business.

In the course of running IT operations for your business, systems collect a wealth of data – data that can yield useful insights to help understand how you deliver services, lower costs and drive more innovation. By analyzing this data effectively, you can get a 360-degree view of the IT business.

However, this data is spread across multiple systems and applications ranging from IT service management (ITSM), IT asset management (ITAM), vendor management, project management and financials to name a few. Thus, the biggest roadblock to getting business insights out of this data is the inability to effectively query for data across these multiple systems. Some organizations, for example, use spreadsheets to track different datasets, but this method only allows you to generate the most basic reports, and takes significant manual efforts. Others use the built-in reporting tools within operational applications, but they are limited to a siloed view of data and the reports are rudimentary with basic calculations around sums, averages, means and medians. The result is that IT managers continue to operate with very shallow analytical capabilities.

Defining the data warehouse

More Read

A New Kind Of Data Warehousing Will Emerge in 2011 According To Gartner
one in five people still lacks access to clean, safe drinking…
A Data Catalog Makes Quick Work of GDPR Compliance
BI and a different type of outsourcing
The Total Cost of Big Data Performance [VIDEO]

Data warehouses  serve as the analytical system of record for IT and can help demonstrate the value of IT to the rest of the business. Think of a data warehouse the same way you’d think of a physical warehouse for any major retailer. There are millions of SKUs across hundreds of manufacturers and brands, so the warehouse is very large – yet items are placed and stacked in a highly organized manner that allows warehouse workers to choose items efficiently. Products are organized by categories, such as toys, books, and electronics, and within these categories are further organized by sub-category, price, or even affinity groups. Whenever workers need a particular item, they don’t have to plan in advance. They follow a certain sequence based on the warehouse organization and can retrieve an item easily.

Similarly, a data warehouse organizes information in highly logical ways that mirrors what the business needs to know, and when. Data in a data warehouse comes from multiple systems – such as IT services, finance and call center – and the ability to deal with idiosyncrasies of disparate datasets and correlating them is a key feature of a data warehouse. For example, if the data is received on a daily basis, how will it automatically be organized once it arrives in the warehouse? If records are updated as a result of fresh data, how does this change calculations? What are the different business rules for matching records from different datasets based on common data dimensions such as time, employee, customer and geography?

The “four Cs” — benefits of a data warehouse

With a data warehouse in place, your IT organization can gain faster, more flexible views into what’s really happening in the IT department. The benefits are broken down into what we call the “four Cs”:

Capability for ad-hoc analyses: A dynamic and nimble business should not be constrained in the queries it can pose against available data. Sales and marketing teams who use modern Business Intelligence (BI) tools already have these capabilities but most IT teams do not. IT operations managers should be able to quickly get answers to their business questions that cross different systems and datasets, without knowing a priori all the metrics and without waiting for weeks for their analysts to respond. They also need to future-proof their ability to ask the questions they haven’t even thought of yet by being able to run ad-hoc queries against a comprehensive data warehouse.  By far, this is the biggest advantage to a data warehouse.

Context: Context is important in our daily lives. For example, when driving on a highway, the posted speed limit signs give us context of whether we are driving too fast. The GPS gives us the context of how far we have come and how much distance remains to be covered. Similarly, an IT data warehouse provides the context about their current situation to an IT organization. For example, a help desk manager would want to know if the week-to-date mean time to repair (MTTR) and backlog of an assignment group is too high or low in comparison to their historical numbers as well as that of their peer groups. What are the maximum and minimum MTTR levels that they have achieved in the past and are they within their average variances? Answers to these questions provide context of whether a team is doing well or needs help.

Correlations: A data warehouse lets you easily correlate data from multiple sources and changes the focus of your analysis to be on business goals, rather than on the topology of operational systems. In order to hold vendors accountable to their SLAs, business owners would need to unite data from a ticketing system with links to assets or the configuration management database, and then again connect it to data from the vendor management application. A data warehouse can correlate data from these sources and enable business owners to identify outages or incidents by each vendor asset, and identify breached SLAs that had business impact.

Calculations: A data warehouse enables calculations beyond the basics of average, count and sum. It allows a range of analytics from percentile, ranking and standard deviations all the way to predictive functions. For example, IT professionals can ask questions such as, “What are the top configuration items that account for 80 percent of our total time spent in incident resolution?”

A data warehouse can transform your IT business

Business insights should not be constrained by the boundaries of your operational applications. As sales and marketing organizations could tell you, they’ve been investing heavily in data warehouse-based analytical systems that provide one view of the customer, and one consolidated view of product profitability and business processes. It’s time for IT to benefit from the same unified view of the business to meet growing pressures to show business impact, optimize costs, and do more with less.  Only an analytical application that is built on the foundation of a data warehouse can provide this unique view. 

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

AI role in medical industry
The Role Of AI In Transforming Medical Manufacturing
Artificial Intelligence Exclusive
b2b sales
Unseen Barriers: Identifying Bottlenecks In B2B Sales
Business Rules Exclusive Infographic
data intelligence in healthcare
How Data Is Powering Real-Time Intelligence in Health Systems
Big Data Exclusive
intersection of data
The Intersection of Data and Empathy in Modern Support Careers
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Gathering Information on a Global Scale

4 Min Read

Keeping Your Eye on the Prize: Business Value

4 Min Read

Going Big – Teradata to Acquire Aster Data

9 Min Read

Australian National Broadband Roll Out

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?