Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: 5 Ways Predictive Analytics Cuts Enterprise Risk
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Predictive Analytics > 5 Ways Predictive Analytics Cuts Enterprise Risk
Business IntelligencePredictive AnalyticsRisk Management

5 Ways Predictive Analytics Cuts Enterprise Risk

JamesTaylor
JamesTaylor
5 Min Read
SHARE

Eric Siegel opened Predictive Analytics World with a view of using predictive analytics in enterprise risk management. Eric began by giving some examples of “macro” risk – single, catastrophic risk events. But his focus, and the focus of predictive analytics, is on “micro” risk – risk-based micro decisions in my terminology. These are risk decisions focused on a single customer, a single claim, a single loan. Examples include the risk of a customer becoming a loss by making a claim, leaving your customer base, failing to make payments on a loan.

Eric Siegel opened Predictive Analytics World with a view of using predictive analytics in enterprise risk management. Eric began by giving some examples of “macro” risk – single, catastrophic risk events. But his focus, and the focus of predictive analytics, is on “micro” risk – risk-based micro decisions in my terminology. These are risk decisions focused on a single customer, a single claim, a single loan. Examples include the risk of a customer becoming a loss by making a claim, leaving your customer base, failing to make payments on a loan. Only if these risks can be exposed, seen, can they be managed. And this means that predictive analytics practitioners must “kick down the door” of risk management and get them to focus on aggregated micro risks not just headline risks.

Eric then gave some definitions of predictive analytics

  1. Analytic methods that score each customer
  2. Deployment of predictive modeling/induction
  3. Data-driven micro-risk management

Eric likes the last one, and I would agree.

More Read

FOWA Miami 09: more diversity, please
A reader asks – how to document decision logic
Analyzing Twitter
Thanks, Big Data: America’s Drinking Habits Predict the Election
New Big Data Platform: Gainsight

5 different areas can have predictive anlaytic risk management:

  1. Sales and Marketing
    Example risks are that making a retention offer will remind them they want to change or that they will accept an offer but would have stayed anyway. You could charge a higher price and drive a customer away or a lower one when they would have purchased at the higher. While I regard these as mostly opportunity-centric decisions, Eric sees them as opportunities to pick the customer treatment with the lowest risk.
    Eric gave a quick overview of uplift modeling (covered in this post about a previous keynote by Eric)
  2. Fraud
    Fraud is one of the two most established uses of predictive analytics to reduce risk and covers healthcare fraud, credit card fraud and much more.
  3. Insurance
  4. Healthcare
    Insurance and healthcare are both industries with lots of actuarial work going on – trying to predict risk for populations of drivers, patients etc. Many are now extending this with predictive models of risk of falling sick, of making a claim etc. One of the presenters is from Heritage Provider Network who are launching a $3M prize for the best prediction of who will be admitted to hospital (powered by the folks at Kaggle). Like the Netflix prize, Eric expects to see multiple teams come together and build sophisticated ensemble models.
  5. Credit
    Credit is in many ways the home of predictive analytics in risk management – credit risk is by far the most common meaning of the word “risk” in analytics. Predicting credit risk for a specific product and a specific customer is key to managing credit risk.

Obviously Eric’s perspective here is very similar to mine – check out Risk by risk – a decision-centric approach to risk management for instance. He also talked about IBM’s Watson a couple of times, particularly in the context of building ensemble models, and you can check out my post on IBM Watson here, and he gave a quick overview of lift curves .

Copyright © 2011 http://jtonedm.com James Taylor

TAGGED:Enterprise Risk Managementpredictive analytics world
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

student learning AI
Advanced Degrees Still Matter in an AI-Driven Job Market
Artificial Intelligence Exclusive
mobile device farm
How Mobile Device Farms Strengthen Big Data Workflows
Big Data Exclusive
composable analytics
How Composable Analytics Unlocks Modular Agility for Data Teams
Analytics Big Data Exclusive
fintech startups
Why Fintech Start-Ups Struggle To Secure The Funding They Need
Infographic News

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

PAW: The unrealized power of data

6 Min Read

How BI and Data Analytics Gurus Used Twitter in February

4 Min Read

Answers to the Most Frequently Asked PAW Questions

4 Min Read

Call-For-Speakers – Deadline: June 4

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?