By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    customer experience analytics
    Using Data Analysis to Improve and Verify the Customer Experience and Bad Reviews
    6 Min Read
    data analytics and CRO
    Data Analytics is Crucial for Website CRO
    9 Min Read
    analytics in digital marketing
    The Importance of Analytics in Digital Marketing
    8 Min Read
    benefits of investing in employee data
    6 Ways to Use Data to Improve Employee Productivity
    8 Min Read
    Jira and zendesk usage
    Jira Service Management vs Zendesk: What Are the Differences?
    6 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: PAW: Cross Industry Challenges and Solutions in Predictive Analytics
Share
Notification Show More
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > PAW: Cross Industry Challenges and Solutions in Predictive Analytics
Data MiningPredictive Analytics

PAW: Cross Industry Challenges and Solutions in Predictive Analytics

JamesTaylor
Last updated: 2009/02/19 at 10:24 PM
JamesTaylor
4 Min Read
SHARE

Live from Predictive Analytics World

This session was a panel discussion on the cross-industry challenges and solutions in predictive analytics. Panel sessions are tough to blog so here are some highlights.

  • More and more analysts are having to do their own extract, transform, load work to access databases so having modeling tools that handle this, rather than requiring IT to do it, is helpful.
  • It’s really important to match how people work to how they can work with predictive models – incorporate the predictive scores into decisions they already make. Use them to prioritize or assign, for instance, to start with.

 

More posts and a white paper on predictive analytics and decision management at decisionmanagementsolutions.com/paw


Live from Predictive Analytics World

This session was a panel discussion on the cross-industry challenges and solutions in predictive analytics. Panel sessions are tough to blog so here are some highlights.

  • More and more analysts are having to do their own extract, transform, load work to access databases so having modeling tools that handle this, rather than requiring IT to do it, is helpful.
  • It’s really important to match how people work to how they can work with predictive models – incorporate the predictive scores into decisions they already make. Use them to prioritize or assign, for instance, to start with.
  • Experience in one industry, like credit card fraud, may not play well in another industry and techniques used as well as the way success is described/reported must vary appropriately.
  • Never underestimate the problems in data or the value of cleaning it up before modeling. Clean, valid data is hugely valuable and doing a good job of linking and matching records is particularly important.
  • Can be an over-focus on algorithm selection when simple, structured, disciplined techniques will often work as well. Not only that but the hunt for new techniques causes problems with overfitting and with lack of validation rigor.
  • Outliers and extreme events can really throw off measures – if a large outlier is predicted well then it can make the model look more predictive than it really is.
  • Essential to challenge your assumptions. Don’t get caught out by a single failed assumption.
  • Putting models to work – putting them into decisions – requires organizational change and management to make sure people aren’t threatened by it and understand what to do it. Essential to wrap business rules around the models and make it work in a business context.
  • Always be suspicious of any model you build – challenge it, disprove it, try and uncover problems. Why, why, why.
  • Implicit assumptions can be tough to find and most are found when a test fails. When a test fails therefore, figure out why as there could be a bad assumption in there that caused the failure.

More posts and a white paper on predictive analytics and decision management at decisionmanagementsolutions.com/paw

TAGGED: data mining, paw, predictive analytics, predictive analytics world, predictive model
JamesTaylor February 19, 2009 February 19, 2009
Share This Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

ai can help with nurse burnout
Breakthroughs in AI Are Helping to Prevent Nurse Burnout
Artificial Intelligence Exclusive
AI in marketing
AI Can’t Replace Creativity When Crafting Digital Content
Artificial Intelligence
ai in furniture design
Top 5 AI-Driven Furniture Engineering Design Applications
Artificial Intelligence
data protection regulation
Benefits of Data Management Regulations for Consumers & Businesses
Data Management

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

retail data
Big Data

Managing Seasonal Fluctuations in Retail with Analytics

5 Min Read
predictive analytics for amazon pricing
Predictive Analytics

Using Predictive Analytics to Get the Best Deals on Amazon

8 Min Read
predictive analytics in dropshipping
Predictive Analytics

Predictive Analytics Helps New Dropshipping Businesses Thrive

12 Min Read
data mining
Data Mining

Data Mining Technology Helps Online Brands Optimize Their Branding

7 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?