By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData Collective
  • Analytics
    AnalyticsShow More
    predictive analytics in dropshipping
    Predictive Analytics Helps New Dropshipping Businesses Thrive
    12 Min Read
    data-driven approach in healthcare
    The Importance of Data-Driven Approaches to Improving Healthcare in Rural Areas
    6 Min Read
    analytics for tax compliance
    Analytics Changes the Calculus of Business Tax Compliance
    8 Min Read
    big data analytics in gaming
    The Role of Big Data Analytics in Gaming
    10 Min Read
    analyst,women,looking,at,kpi,data,on,computer,screen
    Promising Benefits of Predictive Analytics in Asset Management
    11 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: 3 Key Ways Big Data Is Changing Financial Trading
Share
Notification Show More
Latest News
ai digital marketing tools
Top Five AI-Driven Digital Marketing Tools in 2023
Artificial Intelligence
ai-generated content
Is AI-Generated Content a Net Positive for Businesses?
Artificial Intelligence
predictive analytics in dropshipping
Predictive Analytics Helps New Dropshipping Businesses Thrive
Predictive Analytics
cloud data security in 2023
Top Tools for Your Cloud Data Security Stack in 2023
Cloud Computing
become a data scientist
Boosting Your Chances for Landing a Job as a Data Scientist
Jobs
Aa
SmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > 3 Key Ways Big Data Is Changing Financial Trading
Big DataExclusive

3 Key Ways Big Data Is Changing Financial Trading

Ryan Kh
Last updated: 2020/11/21 at 10:49 PM
Ryan Kh
6 Min Read
big data and financial trading
Shutterstock Licensed Photo - By metamorworks
SHARE

Big data is one of the internet-oriented developments that have caused enormous impact across all industries over the last couple of decades. The term big data refers to the gigantic amounts of information constantly collected by websites and search engines as people continue to use the internet for diverse purposes. It consists of all kinds of data ? numbers, text, images, tables, audio, video and any other possible type of information. Big data analytics involves the use of a new set of analytical techniques to obtain value from this enormous amount of information. It is a complicated practice/expertise left to professionals such as data analysts, data engineers, and data scientists.

Contents
Growth of big data analytics1. Shift from manual to quantitative trading2. Risk minimization3. Sentimental analysis to complement financial analysisFinal Thoughts

Growth of big data analytics

Big data analytics has experienced exponential growth over the recent past and it can rightfully be considered as a fully-fledged industry. The International Data Corporation (IDC) had predicted in 2016 that sales of big data analytics solutions would reach $187 Billion by 2019. Financial services institutions such as banks and investment firms are among the fastest growing markets for these solutions. Financial trading, from stock, bonds, commodity or Forex trading, is particularly the most impacted aspect of business by big data analytics. Below, we identify and explore three ways in which big data is changing financial trading. These include:

  • Big data analytics is causing a market-wide shift from manual trading to quantitative trading
  • Human error risk minimization and profitability maximization
  • Application of sentimental analysis in financial trading opportunity analysis

1. Shift from manual to quantitative trading

Quantitative analysis is taking over manual trading strategies. More trades are now inspired by the number crunching ability of computer programs and quantitative models. These programs and models are designed to use all available patterns, trends, outcomes and analogies provided by big data. Big financial institutions and hedge funds were the first users of quantitative trading strategies but other kinds of investors including individuals Forex traders are joining in. Quantitative models for financial trading can be more accurate than human analysts in predicting the outcome of particular events that happen in the financial world. They are thus more reliable in making decisions about entering and exiting trade positions.

2. Risk minimization

Access to big data

More Read

utlizing big data for business model

Utilizing Data to Discover Shortcomings Within Your Business Model

Small Businesses Use Big Data to Offset Risk During Economic Uncertainty
The Importance of Data-Driven Approaches to Improving Healthcare in Rural Areas
How Big Data Is Transforming the Renewable Energy Sector
How Pictographs Make Technical Data More User Friendly

is making it possible to mitigate the critical risks human error represents in online trading. Financial analytics now integrates principles that influence political, social and commodity pricing trends. The application of machine learning in financial analytics is also making a huge impact on the practice of electronic financial trading. Through different machine learning technology, computer programs are taught to learn from past mistakes and apply logic using newer, updated information to make better trading decisions. Machine learning is often coupled with algorithmic trading to maximize profitability when trading financial instruments online. Algorithmic trading involves rapidly and precisely executing orders following a set of predetermined rules. This effectively removes human error and the dangers of emotional decision making. High-frequency trading (HFT) is one of the emergent strategies enabling split second trading decision-making. Theory supports the proposal that faster trading platforms generate more profits.

3. Sentimental analysis to complement financial analysis

Sentimental analysis, or opinion mining, is frequently mentioned in financial trading context. It is a type of data mining that involves identifying and categorizing market sentiments. Market sentiment, according to Investopedia, is the overall attitude of investors in the financial markets. It helps to reveal the traders? attitudes toward a financial instrument. Popular market sentiment indicators include bullish percentage, 52 week high/low sentiment ratio, 50-day and 200-day moving averages. Thanks to big data analytics, opinion mining is combined with predictive models to complement financial analysis when making financial trading decisions. Another interesting utilization of sentimental analysis is by contrarian investors who prefer to follow the opposite direction to that of the general market sentiment. For instance, a contrarian Forex trader would theoretically sell a currency that everyone else is buying.

Final Thoughts

Big data impacts in many ways how financial trading transactions are carried out. It helps to make quicker and more accurate trades, thus reducing risk while maximizing the profitability of trading strategies. However, it is noteworthy that big data analytics cannot perfectly predict market scenarios all the time. It has imperfections such as incompleteness of data patterns. In the overall, however, big data analytics presents far more benefits than disadvantages to financial trading. That is why it is increasingly becoming an inevitable necessity for financial institutions.

TAGGED: big data, finance, finance data, financial tech, financial trading, fintech, trading
Ryan Kh February 26, 2019
Share this Article
Facebook Twitter Pinterest LinkedIn
Share
By Ryan Kh
Follow:
Ryan Kh is an experienced blogger, digital content & social marketer. Founder of Catalyst For Business and contributor to search giants like Yahoo Finance, MSN. He is passionate about covering topics like big data, business intelligence, startups & entrepreneurship. Email: ryankh14@icloud.com

Follow us on Facebook

Latest News

ai digital marketing tools
Top Five AI-Driven Digital Marketing Tools in 2023
Artificial Intelligence
ai-generated content
Is AI-Generated Content a Net Positive for Businesses?
Artificial Intelligence
predictive analytics in dropshipping
Predictive Analytics Helps New Dropshipping Businesses Thrive
Predictive Analytics
cloud data security in 2023
Top Tools for Your Cloud Data Security Stack in 2023
Cloud Computing

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

Sign Up for Our Newsletter

Subscribe to our newsletter to get our newest articles instantly!

[mc4wp_form id=”1616″]

You Might also Like

utlizing big data for business model
Big Data

Utilizing Data to Discover Shortcomings Within Your Business Model

6 Min Read
big data use in small businesses
Big Data

Small Businesses Use Big Data to Offset Risk During Economic Uncertainty

7 Min Read
data-driven approach in healthcare
Analytics

The Importance of Data-Driven Approaches to Improving Healthcare in Rural Areas

6 Min Read
big data transforming renewable energy sector
Big Data

How Big Data Is Transforming the Renewable Energy Sector

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US

© 2008-23 SmartData Collective. All Rights Reserved.

Removed from reading list

Undo
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?