Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics
    How Data Analytics Can Help You Construct A Financial Weather Map
    4 Min Read
    financial analytics
    Financial Analytics Shows The Hidden Cost Of Not Switching Systems
    4 Min Read
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: 3 Big Data Myths for Enterprises
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Quality > 3 Big Data Myths for Enterprises
AnalyticsBusiness IntelligenceData QualityData WarehousingHadoopPredictive AnalyticsStatisticsUnstructured Data

3 Big Data Myths for Enterprises

Editor SDC
Editor SDC
5 Min Read
SHARE

Lately, I have been thinking about the entire big data trend. Fundamentally, it makes sense to me and I believe it is useful for some enterprise class problems,  but something about it had been troubling me and I decided to take some time and jot down my thoughts.  As I thought more about it, I realized my core issue is associated with some of the over simplified rhetoric that I hear about what big data can do for businesses. A lot of it is propagated by speakers/companies at big name conferences and subsequently echoed by many blogs and articles. Here are the 3 main myths that I regularly hear:

More Read

Why a Mere 300 Exabytes Will Give Us a Headache [VIDEO]
It Doesn’t Work Like That: BI Development Myths
Real-Time Access to SaaS Data
Data Analytics Is Revolutionizing Medical Credentialing
From the Midfield to the Top

1. More data = More insights
An argument which I have heard a lot is that with enough data, you are more likely to discover patterns and facts and insights. Moreover, with enough data, you can discover patterns and facts using simple counting that you can’t discover in small data using sophisticated statistical methods.

My take:
It is true but as a research concept For businesses the key barrier is not the ability to draw insights from large volumes of data, it is asking the right questions for which they need an insight. It is not never wise to generalize the usefulness of large datasets since the ability to provide answers will depend on the question being asked and the relevance of the data to the question.

2. Insights = Actionability = Decisions
It is almost an implicit assumption that insights will be actionable and since they are actionable business decisions will be made based on them.

My take:
There is a huge gap between insights and actionability.  Analysts always find very interesting insights but a tiny fraction of it will be actionable, especially if one has not started with a very strong business hypothesis to test.

Even more dangerous is the assumption, that because an insight is actionable, an executive will make the decision to implement it. Ask any analyst who has worked in a large company and he /she will tell you that realities of business context and failure of rational choice theory stand in the way of a lot of good actionable insights turning into decisions.

3. Storing all data forever is a good thing
This is the Gmail pitch. Enterprises do not have to decide which data they need to store and what to purge. They can and should store everything because of Myth 1. More data means more insights and competitive advantage. Moreover, storage is cheap so why would you not store all data forever.

My take:
Remember the backlash against Gmail which did not have a delete button when it started. The fact is there is a lot of useless data which increases noise to signal ratio. Enterprises struggle with data quality issues and storing everything without any thought to what data is more useful for which kind of questions does more harm than good. Business centric approaches to data quality and data architecture have a significant payoff for downstream analytics and we should give them their due credit when we talk about big data.

In summary:

1. There is a lot of headroom left for small data insights that enterprises fail to profit from.
2. There are indeed some very interesting use cases for big data which are useful for enterprises (even the non-web related ones)
3. But the hype and the oversimplification of the benefits without thoughtful consideration of issues and barriers will eventually lead to disappointment and disillusion in the short run.

Some interesting perspectives on the topic: James Kobielus , Rama Ramkrishnan

Filed under: Analytics, Business Intelligence, Competing on Analytics, Data 

TAGGED:big data
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

protecting patient data
How to Protect Psychotherapy Data in a Digital Practice
Big Data Exclusive Security
data analytics
How Data Analytics Can Help You Construct A Financial Weather Map
Analytics Exclusive Infographic
AI use in payment methods
AI Shows How Payment Delays Disrupt Your Business
Artificial Intelligence Exclusive Infographic
financial analytics
Financial Analytics Shows The Hidden Cost Of Not Switching Systems
Analytics Exclusive Infographic

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

Image
Big DataData MiningHadoopMapReduceUnstructured Data

A Guide to Spark Streaming – Code Examples Included

6 Min Read
which JS framework is best
Big DataExclusiveProgramming

Which JS Framework Is Best For Big Data Development?

6 Min Read
using big data in retail
Big Data

Using Big Data to Keep Retail Alive and Avoid Being Amazoned

5 Min Read
data scientists
Data Science

5 Hardware Accelerators Every Data Scientist Should Leverage

7 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?