Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Operational Analytics in a Recessionary Environment
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Predictive Analytics > Operational Analytics in a Recessionary Environment
Predictive Analytics

Operational Analytics in a Recessionary Environment

AlbertoRoldan
AlbertoRoldan
4 Min Read
SHARE

Lately I have faced an interesting issue with large companies seeking business analytics assistance: how to provide operational predictive analytics to companies that need results in no more than 5-30 days when their budget is extremely limited and access to their data is narrow. The pressures that companies are facing in these recessionary times are:

  1. Time-to-Market – companies must turn around in a quarter to show improvement to their investors;
  2. Cost-Containment – predictive analytics solutions must be inexpensive to implement; and
  3. Data Limitations – companies can only spend a minimum amount of time in assisting vendors with data issues.

I have found that these issues represent an opportunity for predictive analytics vendors (services, hardware, and software) that have a flexible business model. The answer to this issue involves two old sayings: No man is an island, and You eat an elephant one bite at a time.

Alliances with established companies, as well as new vendors, become essential, since collaboration is a tenet of surviving in difficult times. The ability to bring together different skills and experiences, as well as to have a flexible position to solve problems, is a …



Lately I have faced an interesting issue with large companies seeking business analytics assistance: how to provide operational predictive analytics to companies that need results in no more than 5-30 days when their budget is extremely limited and access to their data is narrow. The pressures that companies are facing in these recessionary times are:

More Read

You Say Tomato, I Say Protocol
Travel funding available for UseR! and DSC 2009
5 Common Use Cases for Hadoop in Retail
Big Data Analytics: The Four Pillars
Google: Find Similar Images
  1. Time-to-Market – companies must turn around in a quarter to show improvement to their investors;
  2. Cost-Containment – predictive analytics solutions must be inexpensive to implement; and
  3. Data Limitations – companies can only spend a minimum amount of time in assisting vendors with data issues.

I have found that these issues represent an opportunity for predictive analytics vendors (services, hardware, and software) that have a flexible business model. The answer to this issue involves two old sayings: No man is an island, and You eat an elephant one bite at a time.

Alliances with established companies, as well as new vendors, become essential, since collaboration is a tenet of surviving in difficult times. The ability to bring together different skills and experiences, as well as to have a flexible position to solve problems, is a keystone in measuring success in these times. Another keystone is to divide predictive analytics issues into small and measurable parts. Vendors that have the ability to prioritize client’s issues have an opportunity to be successful. Prioritization includes the possibility that initial revenues for an analytical project may be limited, but the payoff is an immediate lift to the client.

The time where companies could afford even a free six-month proof of concept in analytics is becoming a thing of the past. Companies do not have the time nor the inclination to hear, “It cannot be done.” Companies literally want and need predictive analytics today so they can face the challenges of tomorrow.

Have you found similar issues? If so, how did you deal with them?

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

intersection of data and patient care
How Healthcare Careers Are Expanding at the Intersection of Data and Patient Care
Big Data Exclusive
dedicated servers for ai businesses
5 Reasons AI-Driven Business Need Dedicated Servers
Artificial Intelligence Exclusive News
data analytics for pharmacy trends
How Data Analytics Is Tracking Trends in the Pharmacy Industry
Analytics Big Data Exclusive
ai call centers
Using Generative AI Call Center Solutions to Improve Agent Productivity
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

How are Analytics related to Innovation?

4 Min Read

Sense and Respond and the New Way of Selling

5 Min Read

ADAPA means business – Predictive Analytics in 90 seconds

1 Min Read

Does President Obama’s Chief Performance Officer Validate Performance Management?

3 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?