Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: To Query or Not to Query: That Is the Question
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Predictive Analytics > To Query or Not to Query: That Is the Question
AnalyticsBig DataPredictive Analytics

To Query or Not to Query: That Is the Question

Radhika Subramanian
Radhika Subramanian
4 Min Read
SHARE

The growth of the digital economy has resulted in torrents of data. This problem will only continue because data is the language of technology. As companies continue to increase their reliance on technology, the data they create and their need to analyze it, will also increase.

The growth of data has given rise to a class of problems that we call, for lack of a better term, big data analytics. The common requirements for solving this class of problems, loosely, are:

The growth of the digital economy has resulted in torrents of data. This problem will only continue because data is the language of technology. As companies continue to increase their reliance on technology, the data they create and their need to analyze it, will also increase.

The growth of data has given rise to a class of problems that we call, for lack of a better term, big data analytics. The common requirements for solving this class of problems, loosely, are:

More Read

Technology Innovation in 2013: A Business and IT Priority
3 Ways Santa Claus Uses Big Data This Holiday Season
4 Ways To Handle The Challenges Of DevOps Implementations
Companies encountering a data engineering talent vacuum
Dataset too big for R ?
  • Tell me what’s in my data
  • What are some outcomes that I can track? (Machine failure, network slowdown, etc.)
  • What indicators are related to these outcomes?
  • How can I respond to these indicators and influence these outcomes?

The broad approach to these kinds of problems is search or query based analytics. The approach is rooted in traditional statistics, where a central tenant of the scientific method is hypothesis testing. If we do not know what’s in the data, we present a hypothesis and then use queries, or questions, to piece a solution together.

A result of this lineage is modern business intelligence, an ad hoc analysis designed to answer a single business question. The answer to this question is typically a statistical model, analytic report, or other type of data summary delivered on demand to the business user.

SAS, the reigning giant of statistical modeling software, defines big data analytics as “(T)he process of examining big data to uncover hidden patterns, unknown correlations and other useful information that can be used to make better decisions.”

But the number of possible queries in a data set is very large.

http://www.numberempire.com/combinatorialcalculator.php

Analysts and data scientists continue to discover new ways to store more data and make our queries run faster, but the additional complexity of more data very quickly outpaces our ability to create more and better queries.

Gartner stated at a recent conference,

“Data is inherently dumb. It doesn’t do anything unless you know how to use it, how to act on it, because algorithms is where the real value lies. Algorithms define action”

The No Query approach requires that the algorithm computes the queries and ranks them based on relevance (like Google’s page rank algorithm).

Would love to hear from you on what kind of tools you use and how you query your data. What are your challenges in querying your data?
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

AI Document Verification for Legal Firms: Importance & Top Tools
AI Document Verification for Legal Firms: Importance & Top Tools
Artificial Intelligence Exclusive
AI supply chain
AI Tools Are Strengthening Global Supply Chains
Artificial Intelligence Exclusive
data analytics and truck accident claims
How Data Analytics Reduces Truck Accidents and Speeds Up Claims
Analytics Big Data Exclusive
predictive analytics for interior designers
Interior Designers Boost Profits with Predictive Analytics
Analytics Exclusive Predictive Analytics

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Exploring Big Data Analytics on Microsoft SharePoint

5 Min Read
Google BigQuery
Big Data

Is Google BigQuery The Future Of Big Data Analytics?

8 Min Read

Data Analyst for a Construction Company: Where to Look?

3 Min Read
data for your email marketing
Best PracticesData CollectionExclusiveMarket ResearchMarketing

How To Successfully Use Data For Your Email Marketing

7 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?