Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: HadoopDB discussion with Daniel Abadi
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Warehousing > HadoopDB discussion with Daniel Abadi
Data Warehousing

HadoopDB discussion with Daniel Abadi

TonyBain
TonyBain
4 Min Read
SHARE


I spoke to Daniel Abadi a few days ago about his HadoopDB announcement that came out recently. I am sure this has been a busy time for Daniel and his team over in Yale as HadoopDB has been getting a lot of interest which I am sure will continue to build.

Some notes from our discussion:

  • HadoopDB is primarily focused on high scalability and the required availability at scale. Daniel questions current MPP’s ability to truly scale past 100 nodes whereas Hadoop has real examples on 3000+ nodes.
  • HadoopDB like many MPP analytical database platforms uses shared nothing relational database as processing units. HadoopDB uses Postgres. Unlike other MPP databases, HadoopDB uses Hadoop as the distributed mechanism.
  • I am ad libbing here, but I understand that Daniel doesn’t dispute DeWitt & Stonebrakers (and his) paper which claims Map/Reduce underperforms when compared to current MPP DBMS. HadoopDB, however, is focused on massive scale, hundreds or thousands of nodes.  Currently the largest MPP database we know of is 96 nodes.
  • Early benchmarking shows HadoopDB outperforms Hadoop but is slower than current MPP databases under normal circumstances. However, when …

I spoke to Daniel Abadi a few days ago about his HadoopDB announcement that came out recently. I am sure this has been a busy time for Daniel and his team over in Yale as HadoopDB has been getting a lot of interest which I am sure will continue to build.

Some notes from our discussion:

  • HadoopDB is primarily focused on high scalability and the required availability at scale. Daniel questions current MPP’s ability to truly scale past 100 nodes whereas Hadoop has real examples on 3000+ nodes.
  • HadoopDB like many MPP analytical database platforms uses shared nothing relational database as processing units. HadoopDB uses Postgres. Unlike other MPP databases, HadoopDB uses Hadoop as the distributed mechanism.
  • I am ad libbing here, but I understand that Daniel doesn’t dispute DeWitt & Stonebrakers (and his) paper which claims Map/Reduce underperforms when compared to current MPP DBMS. HadoopDB, however, is focused on massive scale, hundreds or thousands of nodes.  Currently the largest MPP database we know of is 96 nodes.
  • Early benchmarking shows HadoopDB outperforms Hadoop but is slower than current MPP databases under normal circumstances. However, when simulating node failure mid query HadoopDB outperformed current MPP databases significantly.
  • The higher the scalability the higher the possibility of node failure mid query. Very large Hadoop deployments may experience at least 1 node failure per query (job).
  • HadoopDB is usable today, but should not be considered an “out of the box” solution. HadoopDB is an outcome from a database research initiative, not a commercial venture.  Anyone planning to use HapoopDB will require the appropriate systems & development skills to effectively deploy.

HadoopDB is an innovative approach to the scalability challenges that continue to push the architecture of the modern database forward.

Related articles by Zemanta
  • Researchers Create Database-Hadoop Hybrid (tech.slashdot.org)
  • Yale researchers create database-Hadoop hybrid (computerworld.com)


Link to original post

TAGGED:hadoop
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

data mining to find the right poly bag makers
Using Data Analytics to Choose the Best Poly Mailer Bags
Analytics Big Data Exclusive
data science importance of flexibility
Why Flexibility Defines the Future of Data Science
Big Data Exclusive
payment methods
How Data Analytics Is Transforming eCommerce Payments
Business Intelligence
cybersecurity essentials
Cybersecurity Essentials For Customer-Facing Platforms
Exclusive Infographic IT Security

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Hadoop vs Spark
Big DataHadoopMapReduceProgramming

Big Data New Age: Hadoop vs Spark

5 Min Read

Big Analytics Rather Than Big Data

4 Min Read

Big Data Analytics, Business Intelligence and the Mind of Sherlock Holmes

9 Min Read
Hadoop in retail
AnalyticsBig DataData VisualizationHadoopMapReduceMarketing AutomationModelingPredictive AnalyticsSentiment AnalyticsSocial DataSocial Media AnalyticsSoftwareSQLText AnalyticsUnstructured DataWeb Analytics

5 Common Use Cases for Hadoop in Retail

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?