Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: HadoopDB discussion with Daniel Abadi
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Warehousing > HadoopDB discussion with Daniel Abadi
Data Warehousing

HadoopDB discussion with Daniel Abadi

TonyBain
TonyBain
4 Min Read
SHARE


I spoke to Daniel Abadi a few days ago about his HadoopDB announcement that came out recently. I am sure this has been a busy time for Daniel and his team over in Yale as HadoopDB has been getting a lot of interest which I am sure will continue to build.

Some notes from our discussion:

  • HadoopDB is primarily focused on high scalability and the required availability at scale. Daniel questions current MPP’s ability to truly scale past 100 nodes whereas Hadoop has real examples on 3000+ nodes.
  • HadoopDB like many MPP analytical database platforms uses shared nothing relational database as processing units. HadoopDB uses Postgres. Unlike other MPP databases, HadoopDB uses Hadoop as the distributed mechanism.
  • I am ad libbing here, but I understand that Daniel doesn’t dispute DeWitt & Stonebrakers (and his) paper which claims Map/Reduce underperforms when compared to current MPP DBMS. HadoopDB, however, is focused on massive scale, hundreds or thousands of nodes.  Currently the largest MPP database we know of is 96 nodes.
  • Early benchmarking shows HadoopDB outperforms Hadoop but is slower than current MPP databases under normal circumstances. However, when …

I spoke to Daniel Abadi a few days ago about his HadoopDB announcement that came out recently. I am sure this has been a busy time for Daniel and his team over in Yale as HadoopDB has been getting a lot of interest which I am sure will continue to build.

Some notes from our discussion:

  • HadoopDB is primarily focused on high scalability and the required availability at scale. Daniel questions current MPP’s ability to truly scale past 100 nodes whereas Hadoop has real examples on 3000+ nodes.
  • HadoopDB like many MPP analytical database platforms uses shared nothing relational database as processing units. HadoopDB uses Postgres. Unlike other MPP databases, HadoopDB uses Hadoop as the distributed mechanism.
  • I am ad libbing here, but I understand that Daniel doesn’t dispute DeWitt & Stonebrakers (and his) paper which claims Map/Reduce underperforms when compared to current MPP DBMS. HadoopDB, however, is focused on massive scale, hundreds or thousands of nodes.  Currently the largest MPP database we know of is 96 nodes.
  • Early benchmarking shows HadoopDB outperforms Hadoop but is slower than current MPP databases under normal circumstances. However, when simulating node failure mid query HadoopDB outperformed current MPP databases significantly.
  • The higher the scalability the higher the possibility of node failure mid query. Very large Hadoop deployments may experience at least 1 node failure per query (job).
  • HadoopDB is usable today, but should not be considered an “out of the box” solution. HadoopDB is an outcome from a database research initiative, not a commercial venture.  Anyone planning to use HapoopDB will require the appropriate systems & development skills to effectively deploy.

HadoopDB is an innovative approach to the scalability challenges that continue to push the architecture of the modern database forward.

Related articles by Zemanta
  • Researchers Create Database-Hadoop Hybrid (tech.slashdot.org)
  • Yale researchers create database-Hadoop hybrid (computerworld.com)


Link to original post

TAGGED:hadoop
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

street address database
Why Data-Driven Companies Rely on Accurate Street Address Databases
Big Data Exclusive
predictive analytics risk management
How Predictive Analytics Is Redefining Risk Management Across Industries
Analytics Exclusive Predictive Analytics
data analytics and gold trading
Data Analytics and the New Era of Gold Trading
Analytics Big Data Exclusive
student learning AI
Advanced Degrees Still Matter in an AI-Driven Job Market
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

public cloud computing
Cloud Computing

Moving to the Public Cloud? Do the Math First

4 Min Read
Hadoop vs Spark
Big DataHadoopMapReduceProgramming

Big Data New Age: Hadoop vs Spark

5 Min Read

Platfora and the Foundation of Business Intelligence for Big Data

7 Min Read

What Is a Data Scientist (and What Isn’t)?

7 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?