Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: A Netflix Prize win is nigh: How they did it
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > A Netflix Prize win is nigh: How they did it
Data Mining

A Netflix Prize win is nigh: How they did it

EricSiegel
EricSiegel
4 Min Read
SHARE

Breaking news: On Friday, Netflix Prize team “BellKor’s Pragmatic Chaos” passed the mark, qualifying for the $1,000,000 prize. The team includes last February’s PAW speaker Andreas Töscher.

But they haven’t won yet. Their qualification triggers a 30-day count-down during which all teams have a final chance to improve their efforts.

The Netflix Prize is an open contest in product recommendations. The competition has provided an incentive to teams worldwide to improve the state-of-the-art, and, in a sense, work as an extended R&D effort for Netflix to improve their movie recommendation accuracy.

How they did it: Joining forces. Only by an international collaboration, and the combining of methodologies, did the current leading team hit the mark. The team is composed of four teams that have also competed independently, located in the U.S., Canada, Austria and Israel.

More Read

From Master Data to Master Graph
Twitter Analytics: Bio information and popularity
Seven Misconceptions about Data Quality
Conducting Research on Social Networks
Twitter Mayhem

Combined methodology made simple. Each team has developed an intricate approach. Once they agreed to collaborate, how hard did they have to work to integrate their systems? Actually, not hard at all. Rather than dig in, think hard, and assess where one system’s weaknesses may be compensated for by another team’s …

Breaking news: On Friday, Netflix Prize team “BellKor’s Pragmatic Chaos” passed the mark, qualifying for the $1,000,000 prize. The team includes last February’s PAW speaker Andreas Töscher.

But they haven’t won yet. Their qualification triggers a 30-day count-down during which all teams have a final chance to improve their efforts.

The Netflix Prize is an open contest in product recommendations. The competition has provided an incentive to teams worldwide to improve the state-of-the-art, and, in a sense, work as an extended R&D effort for Netflix to improve their movie recommendation accuracy.

How they did it: Joining forces. Only by an international collaboration, and the combining of methodologies, did the current leading team hit the mark. The team is composed of four teams that have also competed independently, located in the U.S., Canada, Austria and Israel.

Combined methodology made simple. Each team has developed an intricate approach. Once they agreed to collaborate, how hard did they have to work to integrate their systems? Actually, not hard at all. Rather than dig in, think hard, and assess where one system’s weaknesses may be compensated for by another team’s strengths, they let predictive modeling do it – at least, that’s how Mr. Töscher indicated they did it when 2 of these sub-teams combined to form “BellKor in BigChaos” and become the leader several months ago (we don’t yet officially know how they did it this time).

In this approach, each system may conveniently be treated as a “black box,” training a new “meta-system” to combine the respective outputs into one better output. This is called “meta-learning” or “ensemble methods”, which elicits the concept of collective intelligence.

So stay tuned – we should know more soon!

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

Diverse Research Datasets
The 5 Best Platforms Offering the Most Diverse Research Datasets in 2026
Big Data Exclusive
macro intelligence and ai
How Permutable AI is Advancing Macro Intelligence for Complex Global Markets
Artificial Intelligence Exclusive
warehouse accidents
Data Analytics and the Future of Warehouse Safety
Analytics Commentary Exclusive
stock investing and data analytics
How Data Analytics Supports Smarter Stock Trading Strategies
Analytics Exclusive

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

Comments on the Nine Laws of Data Mining

3 Min Read

On the Beauty of Data Mining

4 Min Read

New Job at FinScore

2 Min Read

PAW: The High ROI of Data Mining for Innovative Organizations

9 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive
AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?