Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: A Netflix Prize win is nigh: How they did it
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > A Netflix Prize win is nigh: How they did it
Data Mining

A Netflix Prize win is nigh: How they did it

EricSiegel
EricSiegel
4 Min Read
SHARE

Breaking news: On Friday, Netflix Prize team “BellKor’s Pragmatic Chaos” passed the mark, qualifying for the $1,000,000 prize. The team includes last February’s PAW speaker Andreas Töscher.

But they haven’t won yet. Their qualification triggers a 30-day count-down during which all teams have a final chance to improve their efforts.

The Netflix Prize is an open contest in product recommendations. The competition has provided an incentive to teams worldwide to improve the state-of-the-art, and, in a sense, work as an extended R&D effort for Netflix to improve their movie recommendation accuracy.

How they did it: Joining forces. Only by an international collaboration, and the combining of methodologies, did the current leading team hit the mark. The team is composed of four teams that have also competed independently, located in the U.S., Canada, Austria and Israel.

More Read

Marketing GoDaddy to the Masses
That Social Networking thing!!
Skype Answering Machine
Identity Mixer: better online identity management?
Forrester on event processing and business rules

Combined methodology made simple. Each team has developed an intricate approach. Once they agreed to collaborate, how hard did they have to work to integrate their systems? Actually, not hard at all. Rather than dig in, think hard, and assess where one system’s weaknesses may be compensated for by another team’s …

Breaking news: On Friday, Netflix Prize team “BellKor’s Pragmatic Chaos” passed the mark, qualifying for the $1,000,000 prize. The team includes last February’s PAW speaker Andreas Töscher.

But they haven’t won yet. Their qualification triggers a 30-day count-down during which all teams have a final chance to improve their efforts.

The Netflix Prize is an open contest in product recommendations. The competition has provided an incentive to teams worldwide to improve the state-of-the-art, and, in a sense, work as an extended R&D effort for Netflix to improve their movie recommendation accuracy.

How they did it: Joining forces. Only by an international collaboration, and the combining of methodologies, did the current leading team hit the mark. The team is composed of four teams that have also competed independently, located in the U.S., Canada, Austria and Israel.

Combined methodology made simple. Each team has developed an intricate approach. Once they agreed to collaborate, how hard did they have to work to integrate their systems? Actually, not hard at all. Rather than dig in, think hard, and assess where one system’s weaknesses may be compensated for by another team’s strengths, they let predictive modeling do it – at least, that’s how Mr. Töscher indicated they did it when 2 of these sub-teams combined to form “BellKor in BigChaos” and become the leader several months ago (we don’t yet officially know how they did it this time).

In this approach, each system may conveniently be treated as a “black box,” training a new “meta-system” to combine the respective outputs into one better output. This is called “meta-learning” or “ensemble methods”, which elicits the concept of collective intelligence.

So stay tuned – we should know more soon!

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

image fx (2)
Monitoring Data Without Turning into Big Brother
Big Data Exclusive
image fx (71)
The Power of AI for Personalization in Email
Artificial Intelligence Exclusive Marketing
image fx (67)
Improving LinkedIn Ad Strategies with Data Analytics
Analytics Big Data Exclusive Software
big data and remote work
Data Helps Speech-Language Pathologists Deliver Better Results
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Using decision management to manage risk

3 Min Read

Technorati Blog Search:Tags / predictive analytics

0 Min Read

Predictive Analytics: 8 Things to Keep in Mind (Part 1)

6 Min Read

Social Monitoring Doesn’t Stop At Social Media

3 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?