Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Data Mining Methodologies
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Business Intelligence > CRM > Data Mining Methodologies
CRMData MiningPredictive Analytics

Data Mining Methodologies

romakanta
romakanta
6 Min Read
SHARE

I use the CRISP-DM methodology for all Data Mining projects as it is industry and tool neutral, and also the most comprehensive of all the methodologies available. Some Data Mining software vendors have come up with their own methodologies. Check them out.

MS SQL SERVER DATA MINING

1. Defining the Problem: Analyze business requirements, define the scope of the problem, define the metrics by which the model will be evaluated, and define specific ob…


I use the CRISP-DM methodology for all Data Mining projects as it is industry and tool neutral, and also the most comprehensive of all the methodologies available. Some Data Mining software vendors have come up with their own methodologies. Check them out.

MS SQL SERVER DATA MINING

1. Defining the Problem: Analyze business requirements, define the scope of the problem, define the metrics by which the model will be evaluated, and define specific objectives for the data mining project.

2. Preparing Data: Remove/handle bad data, find correlations in the data, identify sources of data that are the most accurate, and determining which columns are the most appropriate for use in analysis.

3. Exploring the Data: Calculate the minimum and maximum values, calculate mean and standard deviations, and look at the distribution of the data.

More Read

Gartner says predictive analytics are the hot BI topic.
How Businesses Can Profit From Mobile Apps
The Golden Rule
Big Data and the Evolution of Supply Chain Planning
Is Predictive Analytics Revealing Unexplored eCommerce Niches?

4. Building Models: Specify the input columns, the attribute that you are predicting, and parameters that tell the algorithm how to process the data.

5. Exploring & Validating Models: Use the models to create predictions, which you can then use to make business decisions, create content queries to retrieve statistics, rules, or formulas from the model, embed data mining functionality directly into an application, update the models after review and analysis or update the models dynamically, as more data comes into the organization.

ORACLE DATA MINING

1. Problem Definition: Specify the project objectives and requirements from a business perspective, formulate it as a data mining problem and develop a preliminary implementation plan.

2. Data Gathering and Preparation: Take a closer look at the data, remove some of the data or add additional data, identify data quality problems, and scan for patterns in the data. Typical tasks include table, case, and attribute selection as well as data cleansing and transformation.

3. Model Building and Evaluation: Select and apply various modeling techniques and calibrate the parameters to optimal values. If the algorithm requires data transformations, step back to the previous phase to implement them.

4. Knowledge Deployment: Can involve scoring (the application of models to new data), the extraction of model details (for example the rules of a decision tree), or the integration of data mining models within applications, data warehouse infrastructure, or query and reporting tools.

SEMMA from SAS

1. Sample the data by creating one or more data tables. The sample should be large enough to contain the significant information, yet small enough to process.

2. Explore the data by searching for anticipated relationships, unanticipated trends, and anomalies in order to gain understanding and ideas.

3. Modify the data by creating, selecting, and transforming the variables to focus the model selection process.

4. Model the data by using the analytical tools to search for a combination of the data that reliably predicts a desired outcome.

5. Assess the data by evaluating the usefulness and reliability of the findings from the data mining process.

CRISP-DM (CRoss Industry Standard Process for Data Mining)

1. Business Understanding: Understand the project objectives and requirements from a business perspective, convert this knowledge into a data mining problem definition, and a preliminary plan designed to achieve the objectives.

2. Data Understanding: Collect initial data and proceed with activities in order to get familiar with the data, to identify data quality problems, to discover first insights into the data, or to detect interesting subsets to form hypotheses for hidden information.

3. Data Preparation: Tasks include table, record, and attribute selection as well as transformation and cleaning of data for modeling tools.

4. Modeling: Select and apply various modeling techniques, calibrate their parameters to optimal values, step back to the data preparation phase if needed.

5. Evaluation: Evaluate the model, review the steps executed to construct the model, to be certain it properly achieves the business objectives. At the end of this phase, a decision on the use of the data mining results should be reached.

6. Deployment: Depending on the requirements, the deployment phase can be as simple as generating a report or as complex as implementing a repeatable data mining process. In many cases it will be the customer, not the data analyst, who will carry out the deployment steps.

http://datalligence.blogspot.com/

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

sales and data analytics
How Data Analytics Improves Lead Management and Sales Results
Analytics Big Data Exclusive
ai in marketing
How AI and Smart Platforms Improve Email Marketing
Artificial Intelligence Exclusive Marketing
AI Document Verification for Legal Firms: Importance & Top Tools
AI Document Verification for Legal Firms: Importance & Top Tools
Artificial Intelligence Exclusive
AI supply chain
AI Tools Are Strengthening Global Supply Chains
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

How IT Services Companies can prepare for Social CRM opportunity

4 Min Read
Big Data Predictive Analytics Snoozing on the Job
HardwareITPredictive Analytics

A Different Strategy for Solvable Problems in Big Data Predictive Analytics

7 Min Read

Predictive Analytics: 8 Things to Keep in Mind (Part 6)

6 Min Read
chatbots benefits
Artificial IntelligenceCRMITMarketing Automation

10 Ways Chatbots are Changing the Customer Service Cycle

7 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots
AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?