Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Weirdness is the “Curse of Dimensionality”
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Predictive Analytics > Weirdness is the “Curse of Dimensionality”
Predictive Analytics

Weirdness is the “Curse of Dimensionality”

Editor SDC
Editor SDC
3 Min Read
SHARE

I read the following well-written section in “The Elements of Statistical Learning” by Friedman, Hastie, & Tibshirani. This curse of dimensionality is profound. I am assuming you are familiar with the k-nearest neighbors classifier, which is used to introduce the idea.

This sparked ideas in two contexts: 1) human personalities and 2) trading.
1) If you think about human personalities being a combination of real-valued variables (ex. introversion-extroversion, affectionate-cold, optimistic-depressed, driven-apathetic, etc) then this basically says that everyone is weird. Let’s say there were only 10 personality traits, then (following the unit 10D-cube example) 90% of people are located over 80% away from the center toward the fringe.
One caveat- this assumes personality traits are uniformly distributed, but due to peer pressure this is probably not the case.
2) You can’t look into the past for a setup identical to what you are currently seeing. Also, the more data streams you feed into a system, and depending on the learner you are using (ex. k-NN), the more every time slice will look absolutely unique and the harder it will be to get a historical data set large enough to teach an…


I read the following well-written section in “The Elements of Statistical Learning” by Friedman, Hastie, & Tibshirani. This curse of dimensionality is profound. I am assuming you are familiar with the k-nearest neighbors classifier, which is used to introduce the idea.

This sparked ideas in two contexts: 1) human personalities and 2) trading.
1) If you think about human personalities being a combination of real-valued variables (ex. introversion-extroversion, affectionate-cold, optimistic-depressed, driven-apathetic, etc) then this basically says that everyone is weird. Let’s say there were only 10 personality traits, then (following the unit 10D-cube example) 90% of people are located over 80% away from the center toward the fringe.
One caveat- this assumes personality traits are uniformly distributed, but due to peer pressure this is probably not the case.
2) You can’t look into the past for a setup identical to what you are currently seeing. Also, the more data streams you feed into a system, and depending on the learner you are using (ex. k-NN), the more every time slice will look absolutely unique and the harder it will be to get a historical data set large enough to teach any trend.

More Read

A Text Analytics Commercial
Welcome to the Retail Channel for the Business Intelligence…
Why normalization matters with K-Means
Adding decision management to your BPM initiative
Three Ways to Get Your Predictive Models Deployed

Feel free to add your thoughts, this seems to be a very important result so I’m sure there are more conclusions that can be drawn.

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

payment methods
How Data Analytics Is Transforming eCommerce Payments
Business Intelligence
cybersecurity essentials
Cybersecurity Essentials For Customer-Facing Platforms
Exclusive Infographic IT Security
ai for making lyric videos
How AI Is Revolutionizing Lyric Video Creation
Artificial Intelligence Exclusive
intersection of data and patient care
How Healthcare Careers Are Expanding at the Intersection of Data and Patient Care
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

REvolution R Enterprise 2.0 released

11 Min Read
Data
AnalyticsExclusivePredictive Analytics

Empowering Partners and Customers with Data Insights: A Win-Win for Everyone

5 Min Read

Students at the MIT Media Lab have developed a wearable…

1 Min Read

Predictive Analytics in the Cloud – last chance for survey

1 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?