Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Weirdness is the “Curse of Dimensionality”
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Predictive Analytics > Weirdness is the “Curse of Dimensionality”
Predictive Analytics

Weirdness is the “Curse of Dimensionality”

Editor SDC
Editor SDC
3 Min Read
SHARE

I read the following well-written section in “The Elements of Statistical Learning” by Friedman, Hastie, & Tibshirani. This curse of dimensionality is profound. I am assuming you are familiar with the k-nearest neighbors classifier, which is used to introduce the idea.

This sparked ideas in two contexts: 1) human personalities and 2) trading.
1) If you think about human personalities being a combination of real-valued variables (ex. introversion-extroversion, affectionate-cold, optimistic-depressed, driven-apathetic, etc) then this basically says that everyone is weird. Let’s say there were only 10 personality traits, then (following the unit 10D-cube example) 90% of people are located over 80% away from the center toward the fringe.
One caveat- this assumes personality traits are uniformly distributed, but due to peer pressure this is probably not the case.
2) You can’t look into the past for a setup identical to what you are currently seeing. Also, the more data streams you feed into a system, and depending on the learner you are using (ex. k-NN), the more every time slice will look absolutely unique and the harder it will be to get a historical data set large enough to teach an…


I read the following well-written section in “The Elements of Statistical Learning” by Friedman, Hastie, & Tibshirani. This curse of dimensionality is profound. I am assuming you are familiar with the k-nearest neighbors classifier, which is used to introduce the idea.

This sparked ideas in two contexts: 1) human personalities and 2) trading.
1) If you think about human personalities being a combination of real-valued variables (ex. introversion-extroversion, affectionate-cold, optimistic-depressed, driven-apathetic, etc) then this basically says that everyone is weird. Let’s say there were only 10 personality traits, then (following the unit 10D-cube example) 90% of people are located over 80% away from the center toward the fringe.
One caveat- this assumes personality traits are uniformly distributed, but due to peer pressure this is probably not the case.
2) You can’t look into the past for a setup identical to what you are currently seeing. Also, the more data streams you feed into a system, and depending on the learner you are using (ex. k-NN), the more every time slice will look absolutely unique and the harder it will be to get a historical data set large enough to teach any trend.

More Read

Harnessing and Coordinating Warranty Best Practices in a Global Enterprise
4 Ways Predictive Analytics Will Improve Healthcare
SAIC and Zementis to bring “smarts” to the Smart Grid
Recently, spectacular advances in medical imaging combined with…
A Social Media Listening Post – Closing the Feedback Loop

Feel free to add your thoughts, this seems to be a very important result so I’m sure there are more conclusions that can be drawn.

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

street address database
Why Data-Driven Companies Rely on Accurate Street Address Databases
Big Data Exclusive
predictive analytics risk management
How Predictive Analytics Is Redefining Risk Management Across Industries
Analytics Exclusive Predictive Analytics
data analytics and gold trading
Data Analytics and the New Era of Gold Trading
Analytics Big Data Exclusive
student learning AI
Advanced Degrees Still Matter in an AI-Driven Job Market
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

New IBM study on business analytics and optimization

8 Min Read

Social Media and Unemployment

1 Min Read

New White Paper on Uplift Modeling with Predictive Analytics

2 Min Read

Business Rules Resources

3 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?