Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: PAW: The unrealized power of data
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > PAW: The unrealized power of data
Data MiningPredictive Analytics

PAW: The unrealized power of data

JamesTaylor
JamesTaylor
6 Min Read
SHARE

Live from Predictive Analytics World

Andreas Weigend, former amazon.com Chief Scientist, gave a keynote on the unrealized power of data. He started with a historical perspective. In the 70s perhaps 10M used computers, mostly in the back office. By the 80s this had reached 100M and the front office. By the 90s the internet and search brought 1Bn poking around and some customer-company interaction. Now there are perhaps 100M producing content on the web in peer-production and collaboration – customers are interacting with customers. Underlying all this is a drop in communication costs essentially to zero. Now people can contribute and fix data rather than simply consume it and the time to respond – the natural timescale – has disappeared.

Some trends:

  • There is now about 100Gb stored per person on the planet and it is doubling every year.
  • Market research can now combine explicit survey data with implicit behavior data
  • There is a move from models being assumption heavy to being data rich thanks to the number of visitors and the amount of information.
  • From knowing about transactions (enough for recommendation) to knowing interactions (enough for targeting) and ultimately relationships (can…

More Read

Would IBM buying Sun impact the decision management market? Nope.
Mashing, Mixing and Maximizing Data
Surviving These Radical Times – A Must-see Webcast Series
Predictive Analytics in Software: Focusing on Automation
Is Social Analytics Better at Tracking Disease?


Live from Predictive Analytics World

Andreas Weigend, former amazon.com Chief Scientist, gave a keynote on the unrealized power of data. He started with a historical perspective. In the 70s perhaps 10M used computers, mostly in the back office. By the 80s this had reached 100M and the front office. By the 90s the internet and search brought 1Bn poking around and some customer-company interaction. Now there are perhaps 100M producing content on the web in peer-production and collaboration – customers are interacting with customers. Underlying all this is a drop in communication costs essentially to zero. Now people can contribute and fix data rather than simply consume it and the time to respond – the natural timescale – has disappeared.

Some trends:

  • There is now about 100Gb stored per person on the planet and it is doubling every year.
  • Market research can now combine explicit survey data with implicit behavior data
  • There is a move from models being assumption heavy to being data rich thanks to the number of visitors and the amount of information.
  • From knowing about transactions (enough for recommendation) to knowing interactions (enough for targeting) and ultimately relationships (can move to a long term relationship basis).

The customer data revolution has led companies to “sniff the digital exhaust” and there is far more implicit data like location. In addition, individuals like to talk about themselves creating more data and they reveal their relationships with others in all sorts of way. But to get this information, and thus be able to use it, companies have to have a consumer-centric point of view. They have to offer consumers something in return for their information.

Andreas talked about moving from Customer Relationship Management to Customer Managed Relationships. True customer-centricity empowers customers to make the best decisions they can. Customer value is one thing – what is this customer worth to a company – and companies have a value to a customer. Needs to become a bi-directional relationship.

Companies no longer “own” the customer – customers are more likely to evaluate multiple companies online, for instance. Companies don’t know more about their products any more – the web does – and even cannot control their message or branding.

Marketing 2.0 is different:

  • Communication is not just about companies targeting customers 1:1 but recognizing that customers communicate with each other 1:1.
  • Customers like to review products before they buy them and prefer peer reviews. 
  • Relationships also trump many other things. For instance marketing a phone product to those who were called by people who already owned it (using the relationships therefore of existing customers) outperformed a sophisticated marketing model by nearly 5:1. Network-based marketing or leveraging the social graph.
  • Have added all sorts of information about friends, peers, expert bloggers, annotations and more. Using this requires new approaches.

He outlined a five step approach to applying this thinking – PHAME – Problem, Hypothesis, Action, Metrics, Experiment:

  • Problem – defining the problem is key as many businesses have a problem different from what they think they have.
  • Hypothesis – come up with a hypothesis for a solution. This, to some extent, relies on a culture of experimentation.
  • Action – define the actions you are going to try in support of this hypothesis.
  • Metrics – spend some real time defining metrics and measures that will both show that something works and that will encourage movement in the direction you want.
  • Experiments – see what works, doing experiments is both expensive and yet it is cheaper than ignorance.

In conclusion he emphasized that communication costs falling to zero brings customers into the network but only if they get something back and only if the company respects the cost of their attention. Using relationships can result in dramatic results if a experimental and metric-driven culture can be created.

More posts and a white paper on predictive analytics and decision management at decisionmanagementsolutions.com/paw

TAGGED:amazoncustomer datadata miningpawpredictive analyticspredictive analytics worldrelationship marketing
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

street address database
Why Data-Driven Companies Rely on Accurate Street Address Databases
Big Data Exclusive
predictive analytics risk management
How Predictive Analytics Is Redefining Risk Management Across Industries
Analytics Exclusive Predictive Analytics
data analytics and gold trading
Data Analytics and the New Era of Gold Trading
Analytics Big Data Exclusive
student learning AI
Advanced Degrees Still Matter in an AI-Driven Job Market
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Friendship data: 33Across crunches the numbers [audio interview]

5 Min Read

Actuate Makes Big Play with BIRT Analytics

5 Min Read

Yahoo! CEO Marissa Mayer on Data Portabilty

3 Min Read

Personal Data Mining: Solving a Mystery

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?