Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: 100 Petabytes of Data in Poop?
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > 100 Petabytes of Data in Poop?
CommentaryData MiningExclusiveHadoopMapReducePrivacy

100 Petabytes of Data in Poop?

paulbarsch
paulbarsch
6 Min Read
SHARE

University of California computer scientist Dr. Larry Smarr is a man on a mission—to measure everything his body consumes, performs, and yes, discharges. For Dr. Smarr, this data collection has a goal –to fine tune his ecosystem in order to beat a potentially incurable disease. Is this kind of rigorous information collection and analysis the future of healthcare?

University of California computer scientist Dr. Larry Smarr is a man on a mission—to measure everything his body consumes, performs, and yes, discharges. For Dr. Smarr, this data collection has a goal –to fine tune his ecosystem in order to beat a potentially incurable disease. Is this kind of rigorous information collection and analysis the future of healthcare?

Talk to a few friends and you’ll probably find those who count calories, steps, or even chart exercise and/or eating regiments.  But it’s not very likely that your friends are quantifying their personal lives like Larry Smarr.

More Read

What is R?
The Rise of the Columnar Database
“Predictive analytics allows your organization to learn from its collective experience and puts this…”
7 Misconceptions About Data Science
Turbo-Charge Data Scientist Productivity with a Data Catalog

Atlantic Magazine’s June/July 2012 issue describes efforts of Dr. Larry Smarr in capturing his personal data – but not necessarily those of financial or internet viewing habits. Dr. Smarr is capturing health data, and lots of it. He uses armbands to record skin temperature, headbands to monitor sleep patterns, has blood drawn eight times a year, MRIs and ultrasounds when needed, and regular colonoscopies. And of course, he writes down every bite of food and also collects his own stool samples and then ships them to a laboratory.

Monitoring calories makes sense, but stools are also “information rich” says Smarr. “There are about 100 billion bacteria per gram. Each bacterium has DNA whose length is typically one to ten megabases—call it one million bytes of information,” Smarr exclaims. “This means human stool has a data capacity of 100,000 terabytes of information (~97 petabytes) stores per gram.” And all kinds of interesting information on the digestive tract, liver and pancreas can be culled from feces including infection, nutrient absorption and even cancer.

Armed with all this health data, Dr. Smarr is attempting to “model” his ecosystem. This means producing a working model that when fed inputs, can help report, analyze and eventually predict potential health issues. Just as sensor and diagnostic data are useful for auto manufacturers to perform warranty and quality analysis, Dr. Smarr is collecting and analyzing data to fine tune how his human body performs its functions.

But there’s more to the story. In his charting process, Dr. Smarr noticed his C-reactive protein (CRP) count was high—which rises in response to inflammation.  “Troubled, I showed my graphs to my doctors and suggested that something bad was about to happen,” he says.  Believing his higher CRP count was acting as an early warning system, Carr was dismissed by doctors as too caught up in finding a problem where there was none.

Two weeks later Dr. Smarr felt a severe pain in the side of his abdomen.  This time, the doctors diagnosed him with an acute bout of diverticulitis (bowel inflammation) and told him to take antibiotics. But Dr. Smarr wasn’t convinced. He tested his stools and came up with additional alarming numbers that suggested his diverticulitis was perhaps something more—early Crohn’s disease which is an incurable and uncomfortable GI tract condition.  The diagnosis of Crohn’s was subsequently confirmed by doctors.

Critics of “measuring everything” in terms of healthcare suggest that by focusing on massive personal data collection and analysis we’ll all turn into hypochondriacs, looking for ghosts in the machine when there are none. Or, as Nassim Taleb argues; the more variables we test, the disproportionately higher the number of spurious results that appear (to be)”statistically significant”.  And there is also the argument is that predictive analytics may do more harm than good in suggesting potential for illness where a patient may never end up developing a given disease. Correlation is not a cause in other words.

That said, you’d have a hard time convincing Dr. Smarr that patients, healthcare providers and even society at large couldn’t benefit more by quantifying and analyzing inputs, outputs thus gaining a better understanding of our own “system health”.  And fortunately, due to Moore’s Law and today’s software applications, our ability to apply brute force computation to our data-rich problems is now not only possible, it’s available now.

However, what sometimes makes sense conceptually is often much more of a difficult implementation in the real world. A sluggish healthcare system, data privacy issues, and lack of data scientists to perform big data analysis are potential roadblocks in seeing the “quantified life”—for everyone—become a reality any time soon.

Questions:

  • Does data collection and analysis methods as described in this article portend a revolution in healthcare?
  • If everyone rigorously collects and analyzes their personal health data, could this end up raising or reducing overall healthcare costs?
TAGGED:big dataCorrelation does not imply causationdata collectionhealthcareMapReduceMoore's Lawnassim taleb
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

data analytics and truck accident claims
How Data Analytics Reduces Truck Accidents and Speeds Up Claims
Analytics Big Data Exclusive
predictive analytics for interior designers
Interior Designers Boost Profits with Predictive Analytics
Analytics Exclusive Predictive Analytics
big data and cybercrime
Stopping Lateral Movement in a Data-Heavy, Edge-First World
Big Data Exclusive
AI and data mining
What the Rise of AI Web Scrapers Means for Data Teams
Artificial Intelligence Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

The Future of Big Data: Good, Bad or Ugly?

6 Min Read

MicroStrategy Raises the Ante on Mobile, Social and Cloud Innovation

8 Min Read

SAP Business Analytics Strategy Built on SAP HANA and Delivers Better Business Intelligence

10 Min Read
big data and AI
AnalyticsBest PracticesBig DataPredictive Analytics

Three Ways Big Data Is Revamping Manufacturing Processes

6 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?