Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    warehouse accidents
    Data Analytics and the Future of Warehouse Safety
    10 Min Read
    stock investing and data analytics
    How Data Analytics Supports Smarter Stock Trading Strategies
    4 Min Read
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Why isn’t our data quality worse?
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Quality > Why isn’t our data quality worse?
Data Quality

Why isn’t our data quality worse?

JimHarris
JimHarris
4 Min Read
SHARE

In psychology, the term negativity bias is used to explain how bad evokes a stronger reaction than good in the human mind.  Don’t believe that theory?  Compare receiving an insult with receiving a compliment—which one do you remember more often?

In psychology, the term negativity bias is used to explain how bad evokes a stronger reaction than good in the human mind.  Don’t believe that theory?  Compare receiving an insult with receiving a compliment—which one do you remember more often?

Now, this doesn’t mean the dark side of the Force is stronger, it simply means that we all have a natural tendency to focus more on the negative aspects, rather than on the positive aspects, of most situations, including data quality.

More Read

Image
Data Quality Chill Factor
Growth in data-related jobs
Getting to the Root Cause of Data Quality Issues.
DQ-Tip: “There is no such thing as data accuracy…”
Descriptive, Predictive, and Prescriptive Analytics Explained

In the aftermath of poor data quality negatively impacting decision-critical enterprise information, the natural tendency is for a data quality initiative to begin by focusing on the now painfully obvious need for improvement, essentially asking the question:

Why isn’t our data quality better?

Although this type of question is a common reaction to failure, it is also indicative of the problem-seeking mindset caused by our negativity bias.  However, Chip and Dan Heath, authors of the great book Switch, explain that even in failure, there are flashes of success, and following these “bright spots” can illuminate a road map for action, encouraging a solution-seeking mindset.

“To pursue bright spots is to ask the question: What’s working, and how can we do more of it?

Sounds simple, doesn’t it?  Yet, in the real-world, this obvious question is almost never asked.

Instead, the question we ask is more problem focused: What’s broken, and how do we fix it?”

Why isn’t our data quality worse?

For example, let’s pretend that a data quality assessment is performed on a data source used to make critical business decisions.  With the help of business analysts and subject matter experts, it’s verified that this critical source has an 80% data accuracy rate.

The common approach is to ask the following questions (using a problem-seeking mindset):

  • Why isn’t our data quality better?
  • What is the root cause of the 20% inaccurate data?
  • What process (business or technical, or both) is broken, and how do we fix it?
  • What people are responsible, and how do we correct their bad behavior?

But why don’t we ask the following questions (using a solution-seeking mindset):

  • Why isn’t our data quality worse?
  • What is the root cause of the 80% accurate data?
  • What process (business or technical, or both) is working, and how do we re-use it?
  • What people are responsible, and how do we encourage their good behavior?

I am not suggesting that we abandon the first set of questions, especially since there are times when a problem-seeking mindset might be a better approach (after all, it does also incorporate a solution-seeking mindset—albeit after a problem is identified).

I am simply wondering why we often never even consider asking the second set of questions?

Most data quality initiatives focus on developing new solutions—and not re-using existing solutions.

Most data quality initiatives focus on creating new best practices—and not leveraging existing best practices.

Perhaps you can be the chosen one who will bring balance to the data quality initiative by asking both questions:

Why isn’t our data quality better?  Why isn’t our data quality worse?

 

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

macro intelligence and ai
How Permutable AI is Advancing Macro Intelligence for Complex Global Markets
Artificial Intelligence Exclusive
warehouse accidents
Data Analytics and the Future of Warehouse Safety
Analytics Commentary Exclusive
stock investing and data analytics
How Data Analytics Supports Smarter Stock Trading Strategies
Analytics Exclusive
qr codes for data-driven marketing
Role of QR Codes in Data-Driven Marketing
Big Data Exclusive

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

Finding Data Quality

12 Min Read

DQ-View: From Data to Decision

1 Min Read
Image
Best PracticesBig DataData QualityData Warehousing

Why Lean Data Management Is Vital for Agile Companies

6 Min Read

The problem with a full box of big data tools

8 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?