Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Analyzing the Results of Analysis
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Data Management > Best Practices > Analyzing the Results of Analysis
AnalyticsBest PracticesCommentaryData QualityWeb Analytics

Analyzing the Results of Analysis

DeanAbbott
DeanAbbott
4 Min Read
SHARE

Sometimes, the output of analytical tools can be voluminous and complicated. Making sense of it sometimes requires, well, analysis. Following are two examples of applying our tools to their own output.

Model Deployment Verification

Sometimes, the output of analytical tools can be voluminous and complicated. Making sense of it sometimes requires, well, analysis. Following are two examples of applying our tools to their own output.

Model Deployment Verification

More Read

Guns, States, and Death (Illustrated Comments on Aurora)
Is Google BigQuery The Future Of Big Data Analytics?
PAW: The High ROI of Data Mining for Innovative Organizations
5 Ways Where Data-Driven Analytics Reshaped The Software Industry
Connecting the Data Dots Keeps These Companies Alive

From time to time, I have deployed predictive models on a vertical application in the finance industry which is not exactly “user friendly”. I have virtually no access to the actual deployment and execution processes, and am largely limited to examination the production mode output, as implemented on the system in question.

As sometimes happens, the model output does not match my original specification. While the actual deployment is not my individual responsibility, it very much helps if I can indicate where the likely problem is. As these models are straightforward linear or generalized linear models (with perhaps a few input data transformations), I have found it useful to calculate the correlation between each of the input variables and the difference between the deployed model output and my own calculated model output. The logic is that input variables with a higher correlation with the deployment error are more likely to be calculated incorrectly. While this trick is not a cure-all, it quickly identifies in 80% or more of cases the culprit data elements.

Model Stability Over Time

A bedrock premise of all analytical work is that the future will resemble the past. After all, if the rules of the game keep changing, then there’s little point in learning them. Specifically in predictive modeling, this premise requires that the relationship between input and output variables must remain sufficiently stable for discovered models to continue to be useful in the future.

In a recent analysis, I discovered that models universally exhibited a substantial drop in test performance, when comparing out-of-time to (in-time) out-of-sample. The relationships between at least some of my candidate input variables and the target variable are presumably changing over time. In an effort to minimize this issue, I attempted to determine which variables were most susceptible. I calculated the correlation between each candidate predictor and the target, both for an early time-frame and for a later one.

My thinking was that variables whose correlation changed the most across time were the least stable and should be avoided. Note that I was looking for changes in correlation, and not whether correlations were strong or weak. Also, I regarded strengthening correlations just as suspect as weakening ones: The idea is for the model to perform consistently over time.

In the end, avoiding the use of variables which exhibited “correlation slide” did weaken model performance, but did ensure that performance did not deteriorate so drastically out-of-time.

Final Thought

It is interesting to see how useful analytical tools can be when applied to the analytical process itself. I note that solutions like the ones described here need not use fancy tools: Often simple calculations of means, standard deviation and correlations are sufficient.

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

data analytics and truck accident claims
How Data Analytics Reduces Truck Accidents and Speeds Up Claims
Analytics Big Data Exclusive
predictive analytics for interior designers
Interior Designers Boost Profits with Predictive Analytics
Analytics Exclusive Predictive Analytics
big data and cybercrime
Stopping Lateral Movement in a Data-Heavy, Edge-First World
Big Data Exclusive
AI and data mining
What the Rise of AI Web Scrapers Means for Data Teams
Artificial Intelligence Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Big Data, Data Warehousing and the Strata Conference

3 Min Read
email threat landscape
AnalyticsExclusiveITPredictive AnalyticsSecurity

Role Of Predictive Analytics In The Shifting Email Threat Landscape

8 Min Read

The Anachronism Machine: The Language of Downton Abbey

4 Min Read

Create a Slippery Slope

2 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?