By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData Collective
  • Analytics
    AnalyticsShow More
    predictive analytics in dropshipping
    Predictive Analytics Helps New Dropshipping Businesses Thrive
    12 Min Read
    data-driven approach in healthcare
    The Importance of Data-Driven Approaches to Improving Healthcare in Rural Areas
    6 Min Read
    analytics for tax compliance
    Analytics Changes the Calculus of Business Tax Compliance
    8 Min Read
    big data analytics in gaming
    The Role of Big Data Analytics in Gaming
    10 Min Read
    analyst,women,looking,at,kpi,data,on,computer,screen
    Promising Benefits of Predictive Analytics in Asset Management
    11 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: Using Semantic Analytics to Reduce Social Media Monitoring Blind Spots
Share
Notification Show More
Latest News
ai digital marketing tools
Top Five AI-Driven Digital Marketing Tools in 2023
Artificial Intelligence
ai-generated content
Is AI-Generated Content a Net Positive for Businesses?
Artificial Intelligence
predictive analytics in dropshipping
Predictive Analytics Helps New Dropshipping Businesses Thrive
Predictive Analytics
cloud data security in 2023
Top Tools for Your Cloud Data Security Stack in 2023
Cloud Computing
become a data scientist
Boosting Your Chances for Landing a Job as a Data Scientist
Jobs
Aa
SmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Social Data > Using Semantic Analytics to Reduce Social Media Monitoring Blind Spots
AnalyticsSocial Data

Using Semantic Analytics to Reduce Social Media Monitoring Blind Spots

Jennifer Roberts
Last updated: 2011/08/19 at 6:53 PM
Jennifer Roberts
4 Min Read
SHARE

My boss recently found an article on Social Media Explorer called Do Social Media Monitoring Services Leave Brands Blind?. It was largely about a comparison of the results surfaced by source-focused analytics product like Valuevine when compared to other keyword monitoring tools.  The comparison of the results was actually quite shocking but I’ll let you read the full article to get a better idea of the background.

My boss recently found an article on Social Media Explorer called Do Social Media Monitoring Services Leave Brands Blind?. It was largely about a comparison of the results surfaced by source-focused analytics product like Valuevine when compared to other keyword monitoring tools.  The comparison of the results was actually quite shocking but I’ll let you read the full article to get a better idea of the background.

Monitoring social media using keywords or Boolean expressions is easy to configure and to use but the results can be incomplete or inaccurate because this type of approach to social media analytics presumes you know all the terms that must be tracked in advance.  Keywords alone fail to disambiguate the meaning of “Crocs” the shoes or “crocs” the reptile. Unfortunately, as you add more and more expressions to exclude or include content the whole process begins to become very brittle.

More Read

Extract Meta Concepts Through Co-occurrences Analysis and Graph Theory.

#25: Here’s a thought…
Early Indications October 2009: The Exploding Mobile Web
Stephen Wolfram discusses Wolfram|Alpha: Computational Knowledge Engine
Exploring Semantic Means

But we’re not getting into any finger pointing because we actually use keywords and boolean expressions to identify and filter conversations. The difference is that we rely on latent semantic analysis (LSA) to refine our analytics by identifying and capturing conversations based on meaning.  LSA extracts specialized language features from large data sets, like social media conversations, and selects conversations based on their context and content. In other words, semantic technology is able to understand the difference between “Crocs” the shoes or “crocs” the reptile.

The next step is to apply natural language processing (NLP)  to extract specific language elements from a conversations. What exactly does that mean in layperson terms? It means that we apply another lens to the conversation to isolate consumer expressions around pricing, loyalty, quality or what we like to call dimensions. Dimensions can be customized to identify and extract specific elements of a conversations around consumer preferences, intentions or considerations. This approach allows you to surface consumer expressions or opinions in their own words, unsolicited and authentic.  And because the engine behind the analysis is semantic-based, author information is also included, so you end up with a very comprehensive view of the customer and their perspective on a given topic.

The system as a concept looks similar to this:

Click image to enlarge

CI’s approach addresses the inaccuracy and bluntness of keyword search and the speed and cost disadvantages of NLP techniques through the use of latent semantic analysis. It gives you the ability to identify and organize conversations that are most relevant to your analysis to help expand your view.

TAGGED: semantics
Jennifer Roberts August 19, 2011
Share this Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

ai digital marketing tools
Top Five AI-Driven Digital Marketing Tools in 2023
Artificial Intelligence
ai-generated content
Is AI-Generated Content a Net Positive for Businesses?
Artificial Intelligence
predictive analytics in dropshipping
Predictive Analytics Helps New Dropshipping Businesses Thrive
Predictive Analytics
cloud data security in 2023
Top Tools for Your Cloud Data Security Stack in 2023
Cloud Computing

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

Sign Up for Our Newsletter

Subscribe to our newsletter to get our newest articles instantly!

[mc4wp_form id=”1616″]

You Might also Like

Extract Meta Concepts Through Co-occurrences Analysis and Graph Theory.

4 Min Read

#25: Here’s a thought…

7 Min Read

Early Indications October 2009: The Exploding Mobile Web

7 Min Read

Stephen Wolfram discusses Wolfram|Alpha: Computational Knowledge Engine

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US

© 2008-23 SmartData Collective. All Rights Reserved.

Removed from reading list

Undo
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?