Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Using Data for K-12 Education
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Data Management > Best Practices > Using Data for K-12 Education
Best PracticesModelingPolicy and GovernancePredictive AnalyticsSentiment AnalyticsText Analytics

Using Data for K-12 Education

tkorte
tkorte
5 Min Read
Image
SHARE

Image

Image

When 44 Atlanta schools were implicated in a standardized test cheating scandal in 2011, “data” quickly became the vocabulary word of the day. The participating teachers and administrators, some of whom were found to have secretly corrected students’ wrong answers on tests, blamed “pressure to meet targets in the data-driven environment” of the school. But data analysis was also eventually responsible for identifying the schools suspected of cheating by identifying outliers in test score improvement. These are only two examples of the presence of data analytics in public schools, which will only increase as data standardization and database interoperability initiatives enable deeper analysis. And while there are some negatives, the use of advanced analytics for educational data could also encourage numerous positive outcomes such as increased individualized learning, enhanced test-preparedness, improved identification of cheating, better course design, and reduced costs across school districts.

A 2012 report from the Brookings Institution highlights some successful applications, including adaptive tutoring systems that provide students with real-time feedback and predictive assessments that can gauge preparedness for standardized tests. Researchers from Carnegie Mellon University and Worcester Polytechnic Institute used intelligent tutor software to study reading comprehension and found that “re-reading a story leads to approximately half as much learning as reading a new story.”

More Read

Data Mining Data Sets
New Generation of Big Data Security Risks Raises Questions About VPNs
Online ‘dating service’ for tech jobs launched.
Last call for papers for Business Rules Forum/EDM Summit 2009
Connecting the Enterprise — With Analytics

Other relatively easy-to-implement interventions include the use of social network analyses to predict undesirable student behavior such as cheating and tardiness, and machine learning algorithms to provide automated course recommendations for high school students.

And the applied computer science literature provides no shortage of more exotic approaches for using data to improve education, such as facial recognition to determine student engagement andnatural language processing for automated essay grading.

However, these approaches, disseminated at bleeding-edge events such as the annual Artificial Intelligence in Education and Educational Data Mining conferences, may be a long way from broad deployment. Even aside from barriers to adoption such as parents’ privacy concerns about the use of student data and older teachers’ resistance to new forms of quantitative evaluation, many advanced data science technologies assume six-figure sample sizes that would require statewide or national collaboration. Without standards to encourage data-sharing on these scales, the “big data” initiatives may not have access to data big enough for their analyses. International efforts like the OECD’s Program for International Student Assessment (PISA) are intended to help alleviate the problem, but with a pool of students in the hundreds of thousands, PISA will need to scale up before its full impact can be seen.

School- and district-level data have been underemployed as well. Although widely used in state and local economic analyses, these datasets still provide an opportunity for more granular insights using statistical techniques such as latent variable modeling. A few cities, such as New York and Philadelphia, have released demographic and enrollment data in open, machine-readable formats to encourage deeper analysis. The continued release of open educational data will be crucial to encouraging start-ups to develop cost-effective educational technologies, and other major cities and states should explore such initiatives.

Another challenge facing innovators in educational data is the difficulty of accessing and standardizing data stored in legacy student information systems (SIS). Startups including San Francisco-based LearnSprout and Clever have made some inroads in this area, with offerings that synchronize SIS data across multiple educational technology platforms and save developers the messy work of implementing cross-system compatibility.

Breaking down SIS barriers that are imposed on developers will also encourage the deployment of more advanced data science initiatives that use educational data. In addition, specific policy interventions can encourage participation and use. Tying some of the Department of Education’sRace to the Top funding to participation in data-driven educational initiatives and educational analytics pilot programs is one example. Ultimately, if schools can be persuaded to better prepare themselves for the future, they will only have an easier time doing the same thing for their students.

Photo: Brad Flickinger, Creative Commons

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

image fx (2)
Monitoring Data Without Turning into Big Brother
Big Data Exclusive
image fx (71)
The Power of AI for Personalization in Email
Artificial Intelligence Exclusive Marketing
image fx (67)
Improving LinkedIn Ad Strategies with Data Analytics
Analytics Big Data Exclusive Software
big data and remote work
Data Helps Speech-Language Pathologists Deliver Better Results
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

#23: Here’s a thought…

7 Min Read
big data privacy
AnalyticsBest PracticesBig DataCulture/LeadershipData ManagementPolicy and GovernancePrivacySecurityTransparency

Big Data: A Revolution That Will Transform How We Live, Work, and Think

13 Min Read

Because it’s Friday: Breaking Up

0 Min Read

Building Brand One Customer at a Time

13 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence
ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?