By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data-driven white label SEO
    Does Data Mining Really Help with White Label SEO?
    7 Min Read
    marketing analytics for hardware vendors
    IT Hardware Startups Turn to Data Analytics for Market Research
    9 Min Read
    big data and digital signage
    The Power of Big Data and Analytics in Digital Signage
    5 Min Read
    data analytics investing
    Data Analytics Boosts ROI of Investment Trusts
    9 Min Read
    football data collection and analytics
    Unleashing Victory: How Data Collection Is Revolutionizing Football Performance Analysis!
    4 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: Using Analytics to Identify New Valuable Customers
Share
Notification Show More
Aa
SmartData CollectiveSmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Data Management > Best Practices > Using Analytics to Identify New Valuable Customers
AnalyticsBest PracticesCRMMarketing

Using Analytics to Identify New Valuable Customers

Editor SDC
Last updated: 2012/02/15 at 8:49 AM
Editor SDC
3 Min Read
SHARE
Value segments can provide useful information for the development of effective Acquisition models. Acquisition campaigns aim at the increase of the market share through expansion of the customer base with customers new to the market or drawn from competitors. In mature markets there is a fierce competition for acquiring new customers. Each organization incorporates aggressive strategies, massive advertisements and discounts to attract prospects.

Value segments can provide useful information for the development of effective Acquisition models. Acquisition campaigns aim at the increase of the market share through expansion of the customer base with customers new to the market or drawn from competitors. In mature markets there is a fierce competition for acquiring new customers. Each organization incorporates aggressive strategies, massive advertisements and discounts to attract prospects.

Analytics can be used to guide the customer acquisition efforts. However a typical difficulty with acquisition models is the availability of input data. The amount of information available for people who do not yet have a relationship with the organization is generally limited compared to information about existing customers. Without data you can not build predictive models. Thus data on prospects must be collected. Most often buying data on prospects at an individual or postal code level can resolve this issue.

A usual approach in such cases is to run a test campaign on a random sample of prospects, record their responses and analyze them with predictive models (classification models like decision trees for example) in order to identify the profiles associated with increased probability of offer acceptance.

More Read

ai in marketing

4 Ways AI Can Improve Your Marketing Strategy

NIST 800-171 Safeguards Help Non-Federal Networks Handling CUI
Does Data Mining Really Help with White Label SEO?
IT Hardware Startups Turn to Data Analytics for Market Research
The Power of Big Data and Analytics in Digital Signage
The derived models can then be used to score all prospects in terms of acquisition probability. The tricky part in this method is that it requires the roll out of a test campaign to record prospect responses in order to be able to train the respective models. However, an organization should not try to get any customer but it should focus on new customers with value prospects . Therefore, an alternative approach, which of course can be combined with the one described above, is to search for potentially valuable customers.
According to this approach the model is trained (again a classification model) on existing customers, it identifies the profile of the high value customers and then extrapolates it into the list of prospects to discern the ones with similar characteristics. The key to this process is to build a model on existing customers using only fields that are also available for prospects. For example, if only demographics are available for prospects, the respective model should be trained only with such data.
Acquisition marketing activities could target new customers with the ‘valuable’ profile and new products related to these profiles could be developed, aiming to acquire new customers with profit possibilities.

Editor SDC February 15, 2012
Share This Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

big data and IP laws
Big Data & AI In Collision Course With IP Laws – A Complete Guide
Big Data
ai in marketing
4 Ways AI Can Enhance Your Marketing Strategies
Marketing
sobm for ai-driven cybersecurity
Software Bill of Materials is Crucial for AI-Driven Cybersecurity
Security
IT budgeting for data-driven companies
IT Budgeting Practices for Data-Driven Companies
IT

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

ai in marketing
Artificial Intelligence

4 Ways AI Can Improve Your Marketing Strategy

8 Min Read
data security
Data Management

NIST 800-171 Safeguards Help Non-Federal Networks Handling CUI

5 Min Read
data-driven white label SEO
Analytics

Does Data Mining Really Help with White Label SEO?

7 Min Read
marketing analytics for hardware vendors
Analytics

IT Hardware Startups Turn to Data Analytics for Market Research

9 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?