Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Hadoop 2.0: Yes, It’s a Big Deal
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Software > Hadoop > Hadoop 2.0: Yes, It’s a Big Deal
HadoopSoftware

Hadoop 2.0: Yes, It’s a Big Deal

MIKE20
MIKE20
3 Min Read
SHARE

Contents
  • Hadoop and Platforms
  • Simon Says: We’re Just Getting Started
  • Feedback

In Too Big to Ignore, I wrote about the increasing importance of technologies and systems designed to handle non-relational data. Yes, the structured information on employees, sales, customers, inventory, and the like still matter. But the story doesn’t end with Small Data. There’s a great deal of value to be gleaned from the petabytes of unstructured data lying outside of organizations’ walls. Hadoop is just one tool that can help realize that value.

But no one ever said that Hadoop was perfect or even ideal. The first major iteration of any important technology or application never is.

More Read

Image
Big Data Grows Up at Strata+Hadoop World 2016
The Data Lake: A More Balanced Perspective
For full ERP benefits, use cloud infrastructure and cloud applications.
Hadoop Summit and Hortonworks Promise to Make Big Data More Engaging
How 250 Milliseconds in Added Latency Can Ruin Online Sales This Holiday Season

To that end, data Geeks like me could hardly contain their excitement with the announcement that Hadoop 2.0 is now generally available.

The biggest change to Apache Hadoop 2.2.0, the first generally available version of the 2._x_ series, is the update to the MapReduce framework to Apache YARN, also known as MapReduce 2.0. MapReduce is a big feature in Hadoop—the batch processor that lines up search jobs that go into the Hadoop distributed file system (HDFS) to pull out useful information. In the previous version of MapReduce, jobs could only be done one at a time, in batches, because that’s how the Java-based MapReduce tool worked.

With the available update, MapReduce 2.0 will enable multiple search tools to hit the data within the HDFS storage system at the same time.

Hadoop and Platforms

I asked my friend Scott Kahler about Hadoop 2.0 and he was nothing short of effusive. “Yes, it’s huge deal. YARN will make Hadoop a distributed app platform and not just a Big-Data processing engine,” Kahler told me. “YARN is enabling things like graph databases (Giraph) and event processing engines (Storm) to get instantiated much easier on common distributed system infrastructure.”

I know a thing or two about platforms, and Hadoop 2.0 underscores the fact that it is becoming a de facto ecosystem for Big Data developers across the globe. Got an idea for a new app or web service? Build it on top of Hadoop. Take the core product in a different direction. If others find that app or web service useful, expect further development on top of your work.

Simon Says: We’re Just Getting Started

Hadoop naysayers abound. For all I know, Hadoop isn’t the single best way of handling Big Data. Still, it’s hard to argue that the increased functionality of its second major iteration isn’t a big deal. As it continues to evolve and improve, the benefits begin to exceed its costs.

Yes, many if not most organizations will still resist Big Data for all sorts of reasons. An increasingly developer-friendly Hadoop, though, means great things for enterprises willing to jump into the Big Data fray.

Feedback

What say you?

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

street address database
Why Data-Driven Companies Rely on Accurate Street Address Databases
Big Data Exclusive
predictive analytics risk management
How Predictive Analytics Is Redefining Risk Management Across Industries
Analytics Exclusive Predictive Analytics
data analytics and gold trading
Data Analytics and the New Era of Gold Trading
Analytics Big Data Exclusive
student learning AI
Advanced Degrees Still Matter in an AI-Driven Job Market
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Business Intelligence Isn’t Just About Technology [VIDEO]

1 Min Read
Image
Big DataData MiningHadoopMapReduceUnstructured Data

A Guide to Spark Streaming – Code Examples Included

6 Min Read

Could Cloud Based Systems Save the World?

4 Min Read

Data Analytics Evolution at LinkedIn – Key Takeaways

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?