Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
    pexels pavel danilyuk 8112119
    Data Analytics Is Revolutionizing Medical Credentialing
    8 Min Read
    data and seo
    Maximize SEO Success with Powerful Data Analytics Insights
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Hadoop 2.0: Yes, It’s a Big Deal
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Software > Hadoop > Hadoop 2.0: Yes, It’s a Big Deal
HadoopSoftware

Hadoop 2.0: Yes, It’s a Big Deal

MIKE20
MIKE20
3 Min Read
SHARE

Contents
Hadoop and PlatformsSimon Says: We’re Just Getting StartedFeedback

In Too Big to Ignore, I wrote about the increasing importance of technologies and systems designed to handle non-relational data. Yes, the structured information on employees, sales, customers, inventory, and the like still matter. But the story doesn’t end with Small Data. There’s a great deal of value to be gleaned from the petabytes of unstructured data lying outside of organizations’ walls. Hadoop is just one tool that can help realize that value.

But no one ever said that Hadoop was perfect or even ideal. The first major iteration of any important technology or application never is.

More Read

Spring Boot Applications
Administration of Spring Boot Applications
Real-Time Access to SaaS Data
First Look: FICO Decision Optimizer
From Operations to Insights: Business Analytics Meets NoSQL
A Two-Stage Approach to Financial Return for Data Lakes

To that end, data Geeks like me could hardly contain their excitement with the announcement that Hadoop 2.0 is now generally available.

The biggest change to Apache Hadoop 2.2.0, the first generally available version of the 2._x_ series, is the update to the MapReduce framework to Apache YARN, also known as MapReduce 2.0. MapReduce is a big feature in Hadoop—the batch processor that lines up search jobs that go into the Hadoop distributed file system (HDFS) to pull out useful information. In the previous version of MapReduce, jobs could only be done one at a time, in batches, because that’s how the Java-based MapReduce tool worked.

With the available update, MapReduce 2.0 will enable multiple search tools to hit the data within the HDFS storage system at the same time.

Hadoop and Platforms

I asked my friend Scott Kahler about Hadoop 2.0 and he was nothing short of effusive. “Yes, it’s huge deal. YARN will make Hadoop a distributed app platform and not just a Big-Data processing engine,” Kahler told me. “YARN is enabling things like graph databases (Giraph) and event processing engines (Storm) to get instantiated much easier on common distributed system infrastructure.”

I know a thing or two about platforms, and Hadoop 2.0 underscores the fact that it is becoming a de facto ecosystem for Big Data developers across the globe. Got an idea for a new app or web service? Build it on top of Hadoop. Take the core product in a different direction. If others find that app or web service useful, expect further development on top of your work.

Simon Says: We’re Just Getting Started

Hadoop naysayers abound. For all I know, Hadoop isn’t the single best way of handling Big Data. Still, it’s hard to argue that the increased functionality of its second major iteration isn’t a big deal. As it continues to evolve and improve, the benefits begin to exceed its costs.

Yes, many if not most organizations will still resist Big Data for all sorts of reasons. An increasingly developer-friendly Hadoop, though, means great things for enterprises willing to jump into the Big Data fray.

Feedback

What say you?

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

image fx (2)
Monitoring Data Without Turning into Big Brother
Big Data Exclusive
image fx (71)
The Power of AI for Personalization in Email
Artificial Intelligence Exclusive Marketing
image fx (67)
Improving LinkedIn Ad Strategies with Data Analytics
Analytics Big Data Exclusive Software
big data and remote work
Data Helps Speech-Language Pathologists Deliver Better Results
Analytics Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Image
Business IntelligenceMarketingMarketing Automation

How Savvy Marketers Transform “Big Consumer Data” into Customer Wins

7 Min Read

Big Data Confusion Looms in the Second Half of 2013

4 Min Read

The Power of Business Collaboration Tools [INFOGRAPHIC]

1 Min Read
first data scientist Norman Nie
AnalyticsBig DataHadoop

The First Data Scientist on the Evolution of Data Science

11 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?