Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: There Are 2 Ways To Make Large Datasets Useful…
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Quality > There Are 2 Ways To Make Large Datasets Useful…
CommentaryData Quality

There Are 2 Ways To Make Large Datasets Useful…

ChrisDixon
ChrisDixon
3 Min Read
SHARE

I’ve spent the majority of my career building technologies that try to do useful things with large datasets.*

One of the most important lessons I’ve learned is that there are only two ways to make useful products out of large data sets. Algorithms that deal with large data sets tend to be accurate at best 80%-90% of the time (an old “joke” about machine learning is that it’s really good at partially solving any problem).

I’ve spent the majority of my career building technologies that try to do useful things with large datasets.*

More Read

Some Problems Are So Hard They Need to Be Solved Piece by Piece
Minding data’s pedigree
Turning Frameworks Into Strategies
Big Data and the SME: Prepare to Succeed
Mr. Jassy, Tear Down This Wall! – a Letter to Amazon’s Web Services

One of the most important lessons I’ve learned is that there are only two ways to make useful products out of large data sets. Algorithms that deal with large data sets tend to be accurate at best 80%-90% of the time (an old “joke” about machine learning is that it’s really good at partially solving any problem).

Consequently, you either need to accept you’ll have some errors but deploy the system in a fault-tolerant context, or you need to figure out how to get the remaining accuracy through manual labor.

What do I mean by fault-tolerant context? If a search engine shows the most relevant result as the 2nd or 3rd result, users are still pretty happy. The same goes for recommendation systems that show multiple results (e.g. Netflix). Trading systems that hedge funds use are also often fault tolerant: if you make money 80% of the time and lose it 20% of the time, you can still usually have a profitable system.

For fault-intolerant contexts, you need to figure out how to scalably and cost-effectively produce the remaining accuracy through manual labor. When we were building SiteAdvisor, we knew that any inaccuracies would be a big problem: incorrectly rating a website as unsafe hurts the website, and incorrectly rating a website as safe hurts the user.

Because we knew automation would only get us 80-90% accuracy, we built 1) systems to estimate confidence levels in our ratings so we would know what to manually review, and 2) a workflow system so that our staff, an offshore team we hired, and users could flag or fix inaccuracies.

* My first job was as a programmer at a hedge fund, where we built systems that analyzed large data sets to trade stock options. Later, I cofounded SiteAdvisor where the goal was to build a system to assign security safety ratings to tens of millions of websites. Then I cofounded Hunch, which was acquired by eBay – we are now working on new recommendation technologies for ebay.com and other eBay websites.

TAGGED:datasets
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

AI role in medical industry
The Role Of AI In Transforming Medical Manufacturing
Artificial Intelligence Exclusive
b2b sales
Unseen Barriers: Identifying Bottlenecks In B2B Sales
Business Rules Exclusive Infographic
data intelligence in healthcare
How Data Is Powering Real-Time Intelligence in Health Systems
Big Data Exclusive
intersection of data
The Intersection of Data and Empathy in Modern Support Careers
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

customer data protection
Data ManagementExclusivePolicy and GovernancePrivacyRisk Management

Here Are The Most Important Ways To Ensure Customer Data Protection

8 Min Read
machine learning
Big DataExclusiveMachine Learning

Mitigating Bias in Machine Learning Datasets

7 Min Read
data science and python
Big DataBusiness Intelligence

Why Choosing Python For Data Science Is An Important Move

11 Min Read

What’s in Data.gov? A recent article by Tim Berners-Lee,…

2 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?