Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: That’s Sick! Text Mining and Words with Multiple Definitions
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > That’s Sick! Text Mining and Words with Multiple Definitions
Big DataBusiness IntelligenceData MiningPredictive AnalyticsSentiment AnalyticsSocial DataText AnalyticsUnstructured Data

That’s Sick! Text Mining and Words with Multiple Definitions

lexalytics
lexalytics
4 Min Read
Image
SHARE

ImageWhen you read the title of this article, you must wonder what I’m talking about when I say, “That’s sick!”

Contents
  • Good or bad?
  • Text Mining Engine

It makes sense if I just witnessed a car accident so heinous that it made me feel sick to my stomach. However, it also makes sense if I just saw Sidney Crosby score the game-winning goal for the gold medal game at the 2014 Socchi Olympics. A difficulty with linguistics is that the same word can have multiple meanings.

ImageWhen you read the title of this article, you must wonder what I’m talking about when I say, “That’s sick!”

It makes sense if I just witnessed a car accident so heinous that it made me feel sick to my stomach. However, it also makes sense if I just saw Sidney Crosby score the game-winning goal for the gold medal game at the 2014 Socchi Olympics. A difficulty with linguistics is that the same word can have multiple meanings.

More Read

Social Media, Corporate Decisions and Analytics
Data-Driven Pitch Deck Examples for Inspiring the Next Big Screenwriter
Top 5 Things Recruiters Should Ask Their Big Data
Digital Heirlooms: What Lasts in a Digital Age?
The Overlooked Benefits Of ASP.Net In Big Data Analytics

In the English language, the word “sick” is defined by the Oxford dictionary as follows: “affected by physical or mental illness”. What you won’t find in the Oxford dictionary is the slang meaning for “sick”, which urban dictionary defines as: “crazy; cool; insane”.

Good or bad?

How can a machine decipher whether we are talking about the “good sick” or the “bad sick”?

Let’s take a step back, how can humans tell which “sick” we are talking about? Humans get help from things like: body language, the tone of the communicator’s voice, eye contact, facial expression, as well as cultural symbols like clothing, hair style, and location.

Natural language processing technology like text mining can’t use the aforementioned methods of communication. It’s just not possible… Yet. In about 5-10 years down the road, when image recognition and emotion analytics become more advanced, then we may start to get cues from body language and voice tone.

Text mining must rely on the contextual understanding of the sentence to tell the difference between the two meanings of the same word.

Text Mining Engine

The words that surround “sick”, and the order of these other words attribute to the contextual understanding of a sentence. Let’s take a look at a couple of examples:

Example 1 – “Looking at that car accident made me feel sick”

A text mining engine knows that when the word “feel” is placed before the word “sick”, “sick” is tagged with negative sentiment. The engine knows that feeling sick is bad.

Example 2 – “Wow, Crosby’s goal was sick!”

A text mining engine will know that a “goal” can’t be “sick” by definition. A goal isn’t a living thing, it can’t be affected by illness, therefore, a goal can’t be sick. (Most text mining engines reference their knowledge from some sort of semantic ontology. Here is an example of Lexalytics’ text mining concept matrix.)

However, if you are working with a dataset about sports, you can train the engine to carry a positive sentiment for the word “sick” whenever it appears in a sentence near the word “goal.”

This is not the “be-all end-all” solution. Words with multiple meanings, double entendres and sarcasm are very tricky things to work around when dealing with text mining. One day, we will have a flawless machine that is programmed with every known dialect, language, slang; literally everything that encompasses language!

But for the time being, it’s really cool that we have the ability to train a machine to understand context like a human.

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

microsoft 365 data migration
Why Data-Driven Businesses Consider Microsoft 365 Migration
Big Data Exclusive
real time data activation
How to Choose a CDP for Real-Time Data Activation
Big Data Exclusive
street address database
Why Data-Driven Companies Rely on Accurate Street Address Databases
Big Data Exclusive
predictive analytics risk management
How Predictive Analytics Is Redefining Risk Management Across Industries
Analytics Exclusive Predictive Analytics

Stay Connected

1.2KFollowersLike
33.7KFollowersFollow
222FollowersPin

You Might also Like

Image
AnalyticsBig Data

How Your Travel Journey Can Be Improved With Big Data

7 Min Read
tips on migrating to a data lake
Data Lake

Important Considerations When Migrating to a Data Lake

7 Min Read
Ecommerce Data
Big DataBusiness IntelligenceData ManagementHadoopMarketingSoftware

Using Microsoft Azure to Optimize Ecommerce Data for POS Solutions

6 Min Read

Strange campaign from Netezza

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?