Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: On Text Analytics vs Machine Translation
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > On Text Analytics vs Machine Translation
Data MiningData QualityData VisualizationSentiment AnalyticsText Analytics

On Text Analytics vs Machine Translation

Ken Hu
Ken Hu
4 Min Read
SHARE

 

I’ve made an interesting observation recently while talking to people about Thinkudo Enlighten. It regards the misunderstanding between Text Analytics and Machine (automated) Translation. More than once people’ve asked “How did you do the Chinese translation?” when I mentioned that Enlighten handles Sentiment Analysis in Chinese. So in this post, I’d like clarify the difference between them.

Each to Their Own

More Read

R Script Creates a Map of Worldwide Email Traffic
Live from Strata
Predicting Airline Loyalty Churn – Cathay Pacific Marco Polo [Case Study]
Relying on Data Can Lead to the Wrong Decisions Says CFO.com
My6Sense: a Twitter filter

 

I’ve made an interesting observation recently while talking to people about Thinkudo Enlighten. It regards the misunderstanding between Text Analytics and Machine (automated) Translation. More than once people’ve asked “How did you do the Chinese translation?” when I mentioned that Enlighten handles Sentiment Analysis in Chinese. So in this post, I’d like clarify the difference between them.

Each to Their Own

First and foremost, Text Analytics and Machine Translation both fall under the field of Natural Langauge Processing (NLP). Whether or not Machine Translation should be a substudy of Text Analytics, I will leave it to the readers within academia to discuss. Personally, I would claim that Text Analytics covers topics which extract and normalize text into measurable data. These topics include topic extraction, word-cloud formation, text classification, and, of course, sentiment analysis. The normalized data can then be fed into other systems for analysis, visualization, and more.

Machine Translation, on the other hand, is a language-specific application of NLP techniques for a very human need. Instead of extracting information from the text, it transforms the text into another form. Granted, Machine Translation might utilize similar techniques as Text Analysis, for instance term-correlation, to achieve its goal. However, the problems they solve come from two separate directions.

Misunderstanding

The misunderstanding might have occured because most of the text analytics studies and results are geared toward the English language. This may lead to misinterpretation that English text is a requirement for Text Analytics problems. However, that is just not true. In fact, many of the theories and models proposed by English Text Analytics are applicable to other languages given modifications. To do so, domain knowledge of the targeted language is necessary to embed the grammar rules and text behaviors into the language model. Just as the n-gram study I’ve shared in my post on Chinese segmentation, with the appropriate preprocesing, the underlying statistical models can still be overserved and utilized for non-English languages. To us, most of the headaches are indeed within the text preprocessing, which may include segmentation, homograph, encoding, and other challenges.

 

Outlier 6z3qq 5651 Correlation
See the full gallery on Posterous

 

Images extracted from Cross Validated

The two fields are solving foundamentally different problems, with Machine Translation having more direct and human-applicable use cases than Text Analytics. Going forward, they both have irreplacable values in understanding human communication and expression. However, we should not confuse them or combine them without understanding the implications. If you are interested in finding out how their fusion can go wrong, my previous post covers that topic.

 

Permalink | Leave a comment  »

TAGGED:text analytics
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

dedicated servers for ai businesses
5 Reasons AI-Driven Business Need Dedicated Servers
Artificial Intelligence Exclusive News
data analytics for pharmacy trends
How Data Analytics Is Tracking Trends in the Pharmacy Industry
Analytics Big Data Exclusive
ai call centers
Using Generative AI Call Center Solutions to Improve Agent Productivity
Artificial Intelligence Exclusive
warehousing in the age of big data
Top Challenges Of Product Warehousing In The Age Of Big Data
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Best Market Research Survey Ever

4 Min Read

Twitter and Text Analysis to Help You Surf Through Traffic

4 Min Read

The Promise and Perils of Text Analytics — Privacy

4 Min Read

Rexer Data Mining Survey Results

2 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?