Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Technology Integration and Big Data: Extracting Value
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Data Management > Best Practices > Technology Integration and Big Data: Extracting Value
AnalyticsBest PracticesData ManagementDecision Management

Technology Integration and Big Data: Extracting Value

Sid Probstein
Sid Probstein
4 Min Read
Image
SHARE

Most people think of Big Data as being about volume, but there are other critical dimensions such as velocity and variety. In some cases, volume is certainly important, but the main driver of business value comes from looking across many disparate sources – both internal and external. A unified view is essential to making this happen.

Most people think of Big Data as being about volume, but there are other critical dimensions such as velocity and variety. In some cases, volume is certainly important, but the main driver of business value comes from looking across many disparate sources – both internal and external. A unified view is essential to making this happen.

Architecturally, there are a few different routes to achieve unified information access (UIA) across silos. The following diagram presents the three most prevalent options. 

 Image

More Read

Do You Have Any Rights in the Age of Big Data Analytics?
Building a Private Cloud: A Strategic Guide
BI Shouldn’t Be Part-time Pursuit for Analysts
Big Data Analytics: The Key to Data Driven Marketing
How Data Analytics Reshape the Ed-Tech Industry

 

  1. Federated or virtualized approach. A client calls a Query Server and provides details on the information it needs. The Query Server connects to each of many sources, both structured and unstructured, passes the query off to each source, and then aggregates the results and returns them to the client. It’s complex to build a model like this, though it seems sensible when first examined because it doesn’t require any normalization. On the other hand, it is also a “brute force” approach that won’t perform well on cross-silo analysis when any result set is large.
  2. Pre-JOINed approach. Data is ingested and normalized into a single model following an ETL process. A Query Server then resolves queries against it. This model will be more consistent with respect to performance. However, it trades-off flexibility at query time because in order for a new relationship to be used, all of the data must be re-ingested and re-normalized. The ingestion logic is also challenging IAS data must be modeled prior to ingestion, and the keys between data items must be pre-defined.
  3. True agile UIA approach. Data is ingested and modeled just as it was in the source repository – typically in tables with keys identifying relationships. Flat repositories like file systems become tables also. This model is consistent with respect to performance, and offers complete flexibility at query time as any relationship, even one that is not formal in the data can be used. The ingestion logic is far simpler than in option #2, as it does not require a normalized model and thus avoids the ETL step.

Selecting one of these architectures depends heavily on the use case. For solutions that simply need to aggregate information from multiple sources, architecture #1 can be made to work, especially if most of the data is structured. Solutions that require relational algebra might try approach #2 if there are relatively few sources, with limited growth of sources over time (it seems to work particularly well for eCommerce sites where the catalog is central to the experience). Architecture #3 is most suited for integrating multiple silos, at scale, across multiple domains, or for solutions that may support numerous types of analysis. 

If you have an upcoming strategic project, use a UIA architecture. This will get your organization and colleagues thinking about how they can build solutions that connect the dots, instead of just creating more silos that require costly and time-consuming integration efforts.

 

TAGGED:UIAunified information access
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

AI role in medical industry
The Role Of AI In Transforming Medical Manufacturing
Artificial Intelligence Exclusive
b2b sales
Unseen Barriers: Identifying Bottlenecks In B2B Sales
Business Rules Exclusive Infographic
data intelligence in healthcare
How Data Is Powering Real-Time Intelligence in Health Systems
Big Data Exclusive
intersection of data
The Intersection of Data and Empathy in Modern Support Careers
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Image
Business IntelligenceData WarehousingDecision ManagementKnowledge ManagementUnstructured Data

“Something is not Right!” – Don’t Ignore Your Gut When Analyzing Information

7 Min Read

Habits of Innovation

4 Min Read

Information Availability: Exploiting the Full Value of Information to Drive Business

5 Min Read

Oracle Takes Endeca – a War of Acquisition?

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?