Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Technology Integration and Big Data: Extracting Value
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Data Management > Best Practices > Technology Integration and Big Data: Extracting Value
AnalyticsBest PracticesData ManagementDecision Management

Technology Integration and Big Data: Extracting Value

Sid Probstein
Sid Probstein
4 Min Read
Image
SHARE

Most people think of Big Data as being about volume, but there are other critical dimensions such as velocity and variety. In some cases, volume is certainly important, but the main driver of business value comes from looking across many disparate sources – both internal and external. A unified view is essential to making this happen.

Most people think of Big Data as being about volume, but there are other critical dimensions such as velocity and variety. In some cases, volume is certainly important, but the main driver of business value comes from looking across many disparate sources – both internal and external. A unified view is essential to making this happen.

Architecturally, there are a few different routes to achieve unified information access (UIA) across silos. The following diagram presents the three most prevalent options. 

 Image

More Read

big data fintech and lending
Here’s How Big Data Influences Banking And Online Lenders
Soccer player predicted as the top rising star – back in November (video)
5 Tips for Streamlining the Supply Chain
Preprocessing – Feature Generation
How M2M Data Will Have a Major Impact by 2020 [INFOGRAPHIC]

 

  1. Federated or virtualized approach. A client calls a Query Server and provides details on the information it needs. The Query Server connects to each of many sources, both structured and unstructured, passes the query off to each source, and then aggregates the results and returns them to the client. It’s complex to build a model like this, though it seems sensible when first examined because it doesn’t require any normalization. On the other hand, it is also a “brute force” approach that won’t perform well on cross-silo analysis when any result set is large.
  2. Pre-JOINed approach. Data is ingested and normalized into a single model following an ETL process. A Query Server then resolves queries against it. This model will be more consistent with respect to performance. However, it trades-off flexibility at query time because in order for a new relationship to be used, all of the data must be re-ingested and re-normalized. The ingestion logic is also challenging IAS data must be modeled prior to ingestion, and the keys between data items must be pre-defined.
  3. True agile UIA approach. Data is ingested and modeled just as it was in the source repository – typically in tables with keys identifying relationships. Flat repositories like file systems become tables also. This model is consistent with respect to performance, and offers complete flexibility at query time as any relationship, even one that is not formal in the data can be used. The ingestion logic is far simpler than in option #2, as it does not require a normalized model and thus avoids the ETL step.

Selecting one of these architectures depends heavily on the use case. For solutions that simply need to aggregate information from multiple sources, architecture #1 can be made to work, especially if most of the data is structured. Solutions that require relational algebra might try approach #2 if there are relatively few sources, with limited growth of sources over time (it seems to work particularly well for eCommerce sites where the catalog is central to the experience). Architecture #3 is most suited for integrating multiple silos, at scale, across multiple domains, or for solutions that may support numerous types of analysis. 

If you have an upcoming strategic project, use a UIA architecture. This will get your organization and colleagues thinking about how they can build solutions that connect the dots, instead of just creating more silos that require costly and time-consuming integration efforts.

 

TAGGED:UIAunified information access
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

sales and data analytics
How Data Analytics Improves Lead Management and Sales Results
Analytics Big Data Exclusive
ai in marketing
How AI and Smart Platforms Improve Email Marketing
Artificial Intelligence Exclusive Marketing
AI Document Verification for Legal Firms: Importance & Top Tools
AI Document Verification for Legal Firms: Importance & Top Tools
Artificial Intelligence Exclusive
AI supply chain
AI Tools Are Strengthening Global Supply Chains
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Information Availability: Exploiting the Full Value of Information to Drive Business

5 Min Read

Beyond Hadoop – Completing the Big Data Picture

2 Min Read

Habits of Innovation

4 Min Read
Image
Business IntelligenceData WarehousingDecision ManagementKnowledge ManagementUnstructured Data

“Something is not Right!” – Don’t Ignore Your Gut When Analyzing Information

7 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence
AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?