Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: A Strategic Mistake With Big Data
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Data Management > Policy and Governance > A Strategic Mistake With Big Data
Big DataPolicy and Governance

A Strategic Mistake With Big Data

BillFranks
BillFranks
5 Min Read
SHARE

Companies are scrambling today to understand what big data is and what they should do with it. Many have also come to believe that they’ll need to develop a strategy for big data, which is absolutely true. However, there is one major mistake that I am seeing a number of organizations make.

Companies are scrambling today to understand what big data is and what they should do with it. Many have also come to believe that they’ll need to develop a strategy for big data, which is absolutely true. However, there is one major mistake that I am seeing a number of organizations make. That mistake is the development of a siloed, distinct big data strategy.

Organizations need to ensure that their strategy for big data is a new facet of their overall enterprise data and analytic strategy. After all, organizations already capture a lot of data. They also perform a lot of analytics against that data. Big data certainly expands the possibilities, as well as the challenges. However, at its core, big data is still just more data feeding more analysis. For that reason, it should be folded into a cohesive data and analytics strategy.

What can go wrong if organizations pursue big data as a distinct initiative? Look no further than the mess that many multi-channel retailers got themselves into through their entry into e-commerce. Many, if not most, brick and mortar retailers launched distinct e-commerce divisions. Some were even separate legal entities. As opposed to viewing e-commerce as a new facet of an overall retail strategy, many retailers viewed it as a new paradigm requiring a totally different strategy. Thus, a distinct division with distinct processes and distinct infrastructure was created.

More Read

Happy New Year : 2009 Predictions and 2008 Recap
Learning about data warehousing for mid-sized companies
Big Data Analytics – Volume, Variety, Velocity
The Slow Demise of 4GLs
Real-Time Pricing Algorithms – For or Against Us?

Fast forward to today. Retailers now consider it critical to provide a consistent experience for customers across channels. They want all of their e-commerce data alongside their other data. They want to deliver offers and content seamlessly to customers in multiple channels. Should be pretty easy, right? Wrong.

Recall that many e-commerce divisions were distinct. This led to different supply chains, different promotional strategies, and even different product hierarchies. This last point is one that causes many analytic professionals I know a lot of pain. In many well-known retailers today, I can go into a store and grab a product and then find that same product on the retailer’s website.  Guess what? They have no way to match those products in their systems. We can see it is the same product, but the systems can’t. As a result, analytic professionals have to manually match up products for any given cross channel analysis. While efforts are being made to correct this illogical setup, it is very difficult and expensive since the ecommerce processes were planned without regard for later integration requirements.

Let’s bring this back to the topic of developing a big data strategy. Organizations that charge ahead with separate, non-integrated strategies for big data will likely end up with systems and processes that are very difficult to integrate together later. Instead, organizations should think through not just how to tackle big data in a bubble, but also how to integrate big data into the overall infrastructure and current and future analytic processes.

It may take a bit longer to think through the bigger picture up front, but it will really save a lot of time, effort, and money later. There is nothing stopping an organization from aggressively experimenting with big data while it figures out the larger plan. In fact, such experimentation can even be a great way to learn about what the plan should be. But it is critical that the bigger plan is the goal from the start.

Make sure that when you hear the need for a big data strategy in your organization that you speak up and reinforce that the strategy must be an extension of existing data and analytic strategies rather than a strategy all to itself. It will provide a much greater chance of long term success.

To see a video version of this blog, visit my YouTube channel.

 

Originally published by the International Institute for Analytics

Share This Article
Facebook Pinterest LinkedIn
Share
ByBillFranks
Follow:
Bill Franks is Chief Analytics Officer for The International Institute For Analytics (IIA). Franks is also the author of Taming The Big Data Tidal Wave and The Analytics Revolution. His work has spanned clients in a variety of industries for companies ranging in size from Fortune 100 companies to small non-profit organizations. You can learn more at http://www.bill-franks.com.

Follow us on Facebook

Latest News

microsoft 365 data migration
Why Data-Driven Businesses Consider Microsoft 365 Migration
Big Data Exclusive
real time data activation
How to Choose a CDP for Real-Time Data Activation
Big Data Exclusive
street address database
Why Data-Driven Companies Rely on Accurate Street Address Databases
Big Data Exclusive
predictive analytics risk management
How Predictive Analytics Is Redefining Risk Management Across Industries
Analytics Exclusive Predictive Analytics

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

data science business intelligence retail
AnalyticsBusiness IntelligenceData ScienceExclusiveNews

How Retail Shifted from Business Intelligence to Data Science

8 Min Read

What’s up with Watson?: Responses to comments in Wall Street Journal

6 Min Read

3 Hours of Pure Soccer Emotion, Visualized with R

3 Min Read

2012 Presidential Elections Popular Vote

1 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?