Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Spectral Clustering Can Be A Game Changer—Here’s How
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Modeling > Spectral Clustering Can Be A Game Changer—Here’s How
AnalyticsModeling

Spectral Clustering Can Be A Game Changer—Here’s How

Steve Jones
Steve Jones
5 Min Read
Big Data and the SME
SHARE

In many fields of exploratory data analysis, you will hear the term Spectral Clustering mentioned. Its widespread use comes from the ability it has to adapt to many different types of data, as well as finding ways to group data that may otherwise seem unrelated. Unlike other types of data processing, Spectral Clustering tends to look at the affinity of the data points – how connected they are to one another – rather than their actual location on a graph. This is where the power is in Spectral Clustering, and how we can use it in applications such as image processing and bioinformatics.

The Basic Steps

Spectral Clustering can be broken up into three smaller steps that create our clusters and then allow us to solve relations between related data points. Remember, Spectral Clustering only works if the data points within a certain set are closely related to each other, but are unrelated to other members outside of the chosen set. The steps we take in setting up for Spectral Clustering are:

  1. Generate a similarity graph between a number of objects. This is, in essence, our cluster. We can have as little as two clusters or dozens, depending on how disparate the data we’re looking at is. The similarity graph links these objects logically.
  2. Calculate the first set of eigenvectors up to a value of k for the Laplacian Matrix generated from our clusters. This allows us to define a feature vector for each individual cluster object.
  3. Run a k-means computation on those vectors in order to divide up those clusters into k classes.

Graph Methodology

When it comes to constructing the graphs, we have a pair of methods we can use. The first is the k-Nearest Neighbor (KNN) mapping which associates any particular point with its closest k-related neighbors, where k is an integer value that is related to local data relationships. The second method is called the ε-neighborhood graph which links relations based on the overlap of a ball with radius ε. The radius can be adjusted to fine-tune the relationship, as in the case of cloud storage applications. Generally, k-Nearest Neighbor gives a more connected view of the data than the ε-neighborhood graph. Due to how KNN is calculated, data that would be on different “scales” could theoretically be linked based on their characteristics. Ε-neighbor processing only gives an ear to the physical location of the points and while the radius can be adjusted, it’s unlikely that it would give as deep connectivity as KNN.

Calculating the Eigenvectors and K-Means Computation

Once the clusters are defined, we move on to creation of the Laplacian Matrix. Knowing the Weight Matrix (W) and the Diagonal (degree) matric (D) we can simply construct the Laplacian Matrix, L by the calculation D – W. Once we have L, we can move on to compute the eigenvectors of L. Finally, we apply the k-means algorithm to our clusters. What k-means seeks to accomplish is to separate the data we have into clusters with the nearest mean to the cluster we’re currently dealing with.

More Read

Marketing Execs VS Market Research Execs
smarterplanet – Twitter Search You can also subscribe to a feed…
Datameer Provides End-user Focused BI Solutions for Big Data Analytics
Apple’s iRadio: What Is Big Data’s Role? [VIDEO]
A Better Way to Model Data

Choosing a Legitimate Value for k

If we take the points in our clusters and project them onto a non-linear embedding, then examine the eigenvalues relating to the Laplacian Matrices, we can make an inference as to what value of k we should be using for our processing.

Data Processing and Spectral Clustering

Scientific data can be better processed when it’s represented as clusters. This procedure allows a data set to be generalized using this procedure in order to prepare the data for more complex processing while at the same time offering unique insights into the data through the location and relation of the clusters formed.

TAGGED:data processinggraph methodologysmart data collectivespectral clustering
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

street address database
Why Data-Driven Companies Rely on Accurate Street Address Databases
Big Data Exclusive
predictive analytics risk management
How Predictive Analytics Is Redefining Risk Management Across Industries
Analytics Exclusive Predictive Analytics
data analytics and gold trading
Data Analytics and the New Era of Gold Trading
Analytics Big Data Exclusive
student learning AI
Advanced Degrees Still Matter in an AI-Driven Job Market
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

data processing
Data Lake

Improving Data Processing with Spark 3.0 & Delta Lake

12 Min Read
using python for data preprocessing
Programming

Python for Business: Optimize Pre-Processing Data for Decision-Making

9 Min Read
big data processing tips
Big Data

A Few Proven Suggestions for Handling Large Data Sets

8 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive
AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?