Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Mobile Advertising, Clustering Algorithms, and Your Ticket for a Free Ride
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Mobile Advertising, Clustering Algorithms, and Your Ticket for a Free Ride
AnalyticsBig DataCollaborative DataData MiningData VisualizationExclusiveITLocationMarketingMarketing AutomationMobilityPredictive AnalyticsSocial DataSocial Media AnalyticsSoftwareStatistics

Mobile Advertising, Clustering Algorithms, and Your Ticket for a Free Ride

BigDataGal
BigDataGal
5 Min Read
SHARE

Because of some pretty bad-ass data science and Google’s ever-increasing awesomeness, it looks like one day in the not too distant future, we will all be able to get a free (or heavily-discounted) ride. A taxi ride, that is.

Because of some pretty bad-ass data science and Google’s ever-increasing awesomeness, it looks like one day in the not too distant future, we will all be able to get a free (or heavily-discounted) ride. A taxi ride, that is.

What’s the catch?.?. Well, the deal is … based on your location you’d receive an offer on your smartphone. The offer advertisement would likely be for a discount on goods or services from a local brick-and-mortar business. If you are interested in going to that part of town, then you can get a free (or discounted) ride. In order to keep people from abusing the free-ride offer, your ride-to-purchase ratio would be accounted for in your Google profile – and if you’re a ride-bum, you probably won’t get too many future offers for the free-ride.

This system isn’t just some scifi junky’s greatest fantasy… it’s on its way to becoming reality. Google was awarded a patent for this transportation-aware physical advertising conversions system back in January of 2014.

More Read

Grid versus Cloud Computing
How Mobile Operators are Mining Big Data
Google+ Is After Your Friends with Big Data and Beautiful Photos
Is Your Big Data Hot or Not?
What do we call what we do?

There’s tons of advanced data science that goes into a system design like this one. While I can’t cover all of the algorithms that a system like this utilizes… I’d like to discuss a powerful location-based algorithm that can be used to design systems similar to that recently patented by Google.

Quietly, behind the scenes, location-based social networking (LBSN) has been stopping the show when it comes to location-based intelligence and advanced mobile marketing. These networks have been recording and analyzing user preferences, user social influence, and user location in order to power personalized, geo-social recommendation engines that can be used to deliver mobile advertisements. Although this practice isn’t brand new, improvements are continually being made.

Recently, Dr. Jia-Dong Zhang has been working out a way to drastically improve location recommendation performance by using a “kernel density estimation approach to personalize the geographical influence on users’ check-in behaviors as individual distributions rather than a universal distribution for all users.”

If you’re not already familiar with it, kernel density estimation (KDE) is a non-parametric estimation method that can be used to calculate the probability density function of a random variable or set of variables. In spatial terms, KDE uses a kernel function to estimate a smooth tapered surface that represents clustering and density patterns of points or lines in space.

Kernel Density Estimation

Figure 1 Kernel density estimate with diagonal bandwidth for synthetic normal mixture data

 

KDE is a popular method for quantifying the intensity and density of a point pattern – in other words, “hot spot” analyses. KDE is quite useful for modeling and predicting spatio-temporal trends related to interest areas like market area analysis, environmental pollution, crime, disease outbreak, and seismic risk. Since the method employs a kernel function to estimate density, there are less boundary effects than those exhibited by counting methods. KDE can be performed using R (‘ks’), Python(‘scipy’),  ArcGIS (Spatial Analyst), and QGIS (heatmap plugin).

If you’d like to sharpen your skillset with respect to location-based data science and algorithms, you can check out Smoothing of Multivariate Data: Density Estimation and Visualization or Density Estimation for Statistics and Data Analysis. Both of these books provide introductory and advanced perspectives on using density estimation in advanced data analysis. I favor the first of the two books I mentioned, simply because it places a greater emphasis on data visualization. (If you decide to purchase one of these books, I receive a small commission based on that sale – just putting that out there for the sake of full disclosure.) If you decide to take on a deeper study of spatial statistics and location recommendation engine algorithms, I’d love to hear what you think of these books yourself. My email address is Lillian@LillianPierson.com, or if you leave comments in the section below then I will be sure to respond back as soon as possible.

 

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

sales and data analytics
How Data Analytics Improves Lead Management and Sales Results
Analytics Big Data Exclusive
ai in marketing
How AI and Smart Platforms Improve Email Marketing
Artificial Intelligence Exclusive Marketing
AI Document Verification for Legal Firms: Importance & Top Tools
AI Document Verification for Legal Firms: Importance & Top Tools
Artificial Intelligence Exclusive
AI supply chain
AI Tools Are Strengthening Global Supply Chains
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Analytics and Ending the Tyranny of the Anecdotal

4 Min Read

Top 10 Tips for Securely Managing BYOD in the Workplace

0 Min Read
Image
AnalyticsBig Data

Finance Can Get a Big Advantage from Big Data

15 Min Read

As the world’s first pocket eReader, Readius® exploits the…

1 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?