Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    predictive analytics risk management
    How Predictive Analytics Is Redefining Risk Management Across Industries
    7 Min Read
    data analytics and gold trading
    Data Analytics and the New Era of Gold Trading
    9 Min Read
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Semantic Technology Makes Sense of Big Data
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Modeling > Semantic Technology Makes Sense of Big Data
AnalyticsModelingText Analytics

Semantic Technology Makes Sense of Big Data

Jennifer Roberts
Jennifer Roberts
3 Min Read
SHARE

Filtering and analyzing unstructured business data has enormous potential to provide a competitive advantage to organizations. The key to realizing those benefits is actually being able to work with the data to reveal those insights whether they are from private or consumer data. Because while there are probably true valuable nuggets of actionable insights, there are also references to the company picnics littered throughout your data.

Filtering and analyzing unstructured business data has enormous potential to provide a competitive advantage to organizations. The key to realizing those benefits is actually being able to work with the data to reveal those insights whether they are from private or consumer data. Because while there are probably true valuable nuggets of actionable insights, there are also references to the company picnics littered throughout your data.

Imagine a collection of customer service chats of customers expressing a desire to switche services, based on a variety of attributes like level of customer service, broadband speed or modem/router quality, competitor deals, etc. Using a powerful language modeling technology, you can more accurately organize text based on how consumers are talking about a category, brand or product.  The resulting information can give your organization a more concrete idea of your customer’s value perspective; what they think is important.

More Read

Al Ries talks to Tom H. C. Anderson about Marketing…
How to Boost Your Sales with Big Data
First Look – RuleXpress
Salary Changes for Quant Workers: What Can You Expect?
How ICD-10 Will Unlock a New Market for Data Analysis

The image below displays the volume (# of conversations) associated with the following dimensions. In other words, how often customers are expressing an opinion or intention around:

  • Advertising
  • Affinity
  • Customer Service
  • Intent to Switch
  • Problem

Click image to enlarge

Now that you have content isolated for each of dimension, you can begin to drill down by data to extract the actual text for that time frame.

Click image to enlarge

Language Modeling Shows Context at Its Best

You cannot get to this point in your analysis if you are relying on brittle or cumbersome technology that requires a lot of manual tuning or that doesn’t shift as the context or language changes. Using semantic filters provides a more advanced form of language modeling that deciphers the context of the language used –  the meaning, not just what terms are present – and matches semantically similar content. This means that more robust and accurate categorization of topics is possible.

Why does content categorization matter?

Organizing on-topic content into categories that match key performance indicators can help  optimize your analysis to track important business metrics. Adding sentiment and dimension analysis elevates your analysis to a whole different level. But its the initial effort to define what your organization is wanting to track and analyze and then mapping the resulting categorization to business metrics that will make the best use of your organization’s data resources.

Click image to enlarge

TAGGED:semantic
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

street address database
Why Data-Driven Companies Rely on Accurate Street Address Databases
Big Data Exclusive
predictive analytics risk management
How Predictive Analytics Is Redefining Risk Management Across Industries
Analytics Exclusive Predictive Analytics
data analytics and gold trading
Data Analytics and the New Era of Gold Trading
Analytics Big Data Exclusive
student learning AI
Advanced Degrees Still Matter in an AI-Driven Job Market
Artificial Intelligence Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Free as in Freebase

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive
ai chatbot
The Art of Conversation: Enhancing Chatbots with Advanced AI Prompts
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?