Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: NoSQL vs. SQL: An Overview
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Software > Hadoop > NoSQL vs. SQL: An Overview
HadoopSoftware

NoSQL vs. SQL: An Overview

MIKE20
MIKE20
5 Min Read
Image
SHARE

ImageWith the increase of big data in industries across the world through Hadoop and Hadoop Hive, numerous changes in how big data is stored and analyzed have occurred. It used to be that Structured Query Language (SQL) was the main method companies used to handle data stored in relational database management systems (RDBMS).

ImageWith the increase of big data in industries across the world through Hadoop and Hadoop Hive, numerous changes in how big data is stored and analyzed have occurred. It used to be that Structured Query Language (SQL) was the main method companies used to handle data stored in relational database management systems (RDBMS). This technology was first introduced in the 1970’s and was extremely productive for it’s time. During it’s more than four decades, SQL has proven very efficient in managing structured, predictable data. Using columns and rows with pre selected schemas, an SQL database can then gather and process the data to make it usable and understandable to the end party. It’s proved very effective.

However, since 1970, the amount and types of information available has risen and changed dramatically. The prevalence of big data has drastically increased the amount of information available to companies and it’s changed what type of information is available. Much of the data available today is unstructured and unpredictable, which is very difficult for traditional SQL databases. These changes have put increasing pressure for a system capable of both gathering and analyzing huge amounts of unstructured and unpredictable data.

Not only is it difficult for SQL to process unstructured and unpredictable information, but it’s also more costly. Not only that, but it’s also more difficult to process very large batches of data. SQL isn’t very flexible and or scalable. NoSQL was developed to solve these difficulties and do what SQL couldn’t do. NoSQL is short for “Not Only Structured Query Language” and in the age of big data is making data gathering and processing much easier for companies and businesses.

More Read

Pros and Cons of Using MySQL for Analytical Reporting
A Quick Guide to Structured and Unstructured Data
5 Tips to Speed Up Your BPM
The Interplay of Software and Hardware with Business and Consumers
Reasons Why Business Intelligence is the New BFF of All Online Marketers

There are numerous differences to the two. I’ll mention a few of the advantages NoSQL has over SQL here.

 Speed

NoSQL doesn’t require schemas like SQL does meaning it can process information much quicker. With SQL, schemas (another word for categories)had to be predetermined before information was entered. That made dealing with unstructured information extremely difficult because companies never knew just what categories of information they would be dealing with. NoSQL doesn’t require schemas so it can handle unstructured information easier and much quicker. Also, NoSQL can handle and process data in real-time. Something SQL doesn’t do.

 Scalability

Another advantage to NoSQL computing is the scalability it provides. Unlike SQL, which tends to be very costly when trying to scale information and isn’t nearly as flexible, NoSQL makes scaling information a breeze. Not only is it cheaper and easier, but it also promotes increased data gathering. With SQL companies had to be very selective in the information they gathered and how much of it they gathered. That placed restrictions on growth and revenue possibilities. Because of NoSQL’s flexibility and scalability, it promotes data growth. That’s good for businesses and it’s good for the consumer.

Cloud Computing

NoSQL is also extremely valuable and important for cloud computing. One of the main reasons we’ve seen such a rise in big data’s prominence in the mainstream is because of cloud computing. Cloud computing has drastically reduced the startup costs of big data by eliminating the need of costly infrastructure. That has increased its availability to both big and small business. Cloud computing has also made the entire process of big data, from the gathering stages to analyzing and implementing, easier for companies. Much of the process is now taken care of and monitored by the service providers. The increased availability of big data means that companies can better serve the general public.

So while SQL still has a future and won’t be going away anytime soon, NoSQL is really the key to future success with big data and cloud computing. It’s flexibility, scalability and low cost make it a very attractive option. Additionally it’s ability to gather and analyze unstructured and unpredictable data quickly and efficiently mean it’s a great option for companies with those needs.

TAGGED:nonSQLsql
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

payment methods
How Data Analytics Is Transforming eCommerce Payments
Business Intelligence
cybersecurity essentials
Cybersecurity Essentials For Customer-Facing Platforms
Exclusive Infographic IT Security
ai for making lyric videos
How AI Is Revolutionizing Lyric Video Creation
Artificial Intelligence Exclusive
intersection of data and patient care
How Healthcare Careers Are Expanding at the Intersection of Data and Patient Care
Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Next query: NoSQL and Business Intelligence

7 Min Read
standard graph query language
ExclusiveNewsProgramming

A Standard Graph Query Language Could Be Coming—Here’s What To Know

14 Min Read

4 Ways to Distribute Your Error Reports

3 Min Read

#OracleSun

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?