Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
    image fx (67)
    Improving LinkedIn Ad Strategies with Data Analytics
    9 Min Read
    big data and remote work
    Data Helps Speech-Language Pathologists Deliver Better Results
    6 Min Read
    data driven insights
    How Data-Driven Insights Are Addressing Gaps in Patient Communication and Equity
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Need for a Robust Data Quality Framework for Big Data
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Quality > Need for a Robust Data Quality Framework for Big Data
Data Quality

Need for a Robust Data Quality Framework for Big Data

koolhits
koolhits
3 Min Read
SHARE

The challenges associated with data quality and corresponding accountability across business domains and research areas has been a concern. Among the key data quality problems associated are:-

The challenges associated with data quality and corresponding accountability across business domains and research areas has been a concern. Among the key data quality problems associated are:-

  • Non-interoperability – Data collected in one system are not electronically transmittable to other systems. Re-inputting the same data in multiple systems consumes resources and increases the potential for data-entry errors.
  • Non-standardized data definitions – Various data providers use different definitions for the same elements. Passed on to the district or state level, non-comparable data are aggregated inappropriately to produce inaccurate results.
  • Unavailability of data – Data required do not exist or are not readily accessible ecause of one or other quality issue. In some cases, data providers may take an approach of “just fill something in” to satisfy distant data collectors, thus creating errors.
  • Inconsistent item response – Not all data providers report the same data elements. Idiosyncratic reporting of different types of information from different sources creates gaps and errors in macro-level data aggregation.
  • Inconsistency over time. The same data element is calculated, defined, and/or reported differently from year to year. Longitudinal inconsistency creates the potential for inaccurate analysis of trends over time.
  • Data entry errors. Inaccurate data are entered into a data collection instrument. Errors in reporting information can occur at any point in the process – from the student’s assessment answer sheet to the state’s report to the federal government.
  • Lack of timeliness. Data are reported too late. Late reporting can jeopardize the completeness of macro-level reporting.

We seriously require some thoughts and readily implementable approach where key business rules can be defined just like other business rules; ensuring proactive reporting of quality issues, checkpoints on new data being inserted and so on.

More Read

Data Darwinism: Market Driven Data Quality
Get the Most Out of Your Oracle Application
The Data Paradox
Will 6G Force Cell Phone Providers to Redesign Their Data Servers?
Splunk: Bringing Big Data Analysis to the Rest of Us

Imagine, if we have a framework which can ensure some of following validation rules:-

  1. Range Check – This checks that the data lies within a specified range of values
  2. Presence Check – This checks that the required data is not missing
  3. Domain Check – This checks that only certain values are accepted
  4. Cross-Field Check – This checks that multiple fields in combination are valid
  5. Cross-Table Check – This checks that multiple tables in combination are valid
  6. Uniqueness Validation – Ensure the values in a column are unique
  7. Reference Integrity Validation – Validate values between tables in relational database model
  8. Duplicate Identification – Identify a row as an unwanted duplicate record
  9. Format Consolidation – Control data values inside a preset mask pattern
  10. Business Rule Compliance


Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

data analytics and truck accident claims
How Data Analytics Reduces Truck Accidents and Speeds Up Claims
Analytics Big Data Exclusive
predictive analytics for interior designers
Interior Designers Boost Profits with Predictive Analytics
Analytics Exclusive Predictive Analytics
big data and cybercrime
Stopping Lateral Movement in a Data-Heavy, Edge-First World
Big Data Exclusive
AI and data mining
What the Rise of AI Web Scrapers Means for Data Teams
Artificial Intelligence Big Data Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Turning Data Into Content Through Social Media

6 Min Read

Business People Are Dumb On Average(s)

7 Min Read

How to Share Bad Project News

5 Min Read
Bad Data Mistakes
Big DataData Quality

The Lessons We can Learn from Bad Data Mistakes Made Throughout History

7 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
giveaway chatbots
How To Get An Award Winning Giveaway Bot
Big Data Chatbots Exclusive

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?