Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    composable analytics
    How Composable Analytics Unlocks Modular Agility for Data Teams
    9 Min Read
    data mining to find the right poly bag makers
    Using Data Analytics to Choose the Best Poly Mailer Bags
    12 Min Read
    data analytics for pharmacy trends
    How Data Analytics Is Tracking Trends in the Pharmacy Industry
    5 Min Read
    car expense data analytics
    Data Analytics for Smarter Vehicle Expense Management
    10 Min Read
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: Naming and Classifying: Text Analysis Vs. Text Analytics
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Analytics > Sentiment Analytics > Naming and Classifying: Text Analysis Vs. Text Analytics
AnalyticsBig DataBusiness IntelligenceSentiment AnalyticsText Analytics

Naming and Classifying: Text Analysis Vs. Text Analytics

SethGrimes
SethGrimes
8 Min Read
SHARE

Bust of AristotleAnalysts and marketers do a lot of naming and classifying — This is a That — in order to communicate distinctions among the many available products and technologies. The categorization practice dates back at least to Aristotle, who created taxonomies for scientific classification. Classification helps us describe and predict.

Bust of AristotleAnalysts and marketers do a lot of naming and classifying — This is a That — in order to communicate distinctions among the many available products and technologies. The categorization practice dates back at least to Aristotle, who created taxonomies for scientific classification. Classification helps us describe and predict.

Granted, software category definitions and boundaries are often disputed. Where industry analysts seek to clarify, often a marketer’s aim is to create differentiation, via a unique category label, for a product that is otherwise little different from a competitor’s.

An example: The terms “text analytics” and “text mining” are largely interchangeable. They name the same set of methods, software tools, and applications. Their distinction stems primarily from the background of the person using each — “text mining” seems most used by data miners, and “text analytics” by individuals and organizations in domains where the road to insight was paved by business intelligence tools and methods — so that the difference is largely a matter of dialect.

More Read

Automated Valuation Models
Big Data: Smaller is Better
Smart Data Is Changing Multi-Board System Design
What to Do When You Don’t Know What You Don’t Know…
Man vs. Machine Contests: Forget “Level” Playing Fields

Sometimes, by contrast, it helps to stress a difference in the import of two terms that the majority use interchangeably. Text Analysis and Text Analytics are two such terms. Both describe creation of insight, via machine processing, from in-the-wild text found in diverse online, social, personal, and enterprise sources and formats. Yet we’d profit by differentiating the two terms, hence this article.

Text Analysis Versus Text Analytics

I’ve been describing term usage: A bit of language analysis. Analysis is an examination of structure, composition, and meaning that provides insight to advance some purpose. Analysis may be heuristic, informal, and/or qualitative.

Contrast with analytics, which is algorithmic rather than heuristic. I define analytics as the systematic application of numerical and statistical methods that derive and deliver quantitative information, whether in the form of indicators, tables, or visualizations. Analytics is formal and repeatable.

Now let’s jump from analysis and analytics in general, to text analysis and text analytics. Qualitative vs. quantitative is perhaps the differentiator we seek, along with a judgment whether the text itself is the object of interest, or whether the text is merely a container for what interests us, namely extractable information content.

Information content (of text): We’re talking entities, facts, relationships, opinion, emotion, intent, identity, and events. Deconstruct a news excerpt, “For fiscal 2013, Oracle reported earnings of $17.6 billion… Oracle president Safra Catz touted operating margins of 47 percent for the fiscal year,” and a hotel-review snippet, “Not a bad choice if gambling is your thing and you don’t mind the ever-present stench of cigarettes… Next time we’re in Vegas, I think we will go for MGM Resorts’ more modern properties,” and you’ll find examples of that good stuff. Your aim is to convert text into data. Crunch a few hundred of these messages (or a few hundred million: this is the big-data era) to compute indicators, spot trends, set alerts, populate a dashboard, and derive predictive and prescriptive models. For good measure, join extracted information with transactional records and demographic profiles and reference data. Abracadabra: You’re doing text analytics.

(Want to learn more? Check out my next Sentiment Analysis Symposium, March 5-6, 2014 in New York, where I’ll have speakers including Stephen Pulman of Oxford Univeristy, on Bleeding Edge Natural Language Processing; Aloke Guha of start-up Cruxly, on Real Time Intent and Sentiment Analysis; Rosalind Picard of the MIT Media Lab on Emotion Recognition; and Sarah Biller, Capital Market Exchange, on Trading Signals from Investor Sentiment.)

In text analysis, the object of interest is the text itself. The analysis describes, and derives qualitative properties from, a document or message (or a collection of documents). Text analysis obtains a text’s salient attributes and characteristics. Text analysis might discern:

  • Language: Is a product review in Parisian or Québécois French?
  • Genre: Is an e-mail message a product inquiry, service request, complaint, sales order, or something else?
  • Descriptive metadata: Authorship, title, publication/posting date.
  • Tone: Is a message angry, happy, sad, insulting, complimentary, or 50 other shades of mood. (Huffington Post factors in automatically detected tonality in its automated comment moderation, which CTO John Pavley will speak about at the sentiment symposium.)
  • Literary style: What level reader is an article written for?
  • Author identity or demographic classification: What do use of slang, idiom, topic, and topical references tell you about the sex, age, ethnicity, and geographic origin of the person posting?
  • Signals such as intent: What do the wording and syntax of a tweet say about hopes and plans, that individually and in the aggregate, represent opportunities and threats?

Admittedly, the boundary here, between text analysis and text analytics, is not rigid. Forms of analytics may enable functions where, as I put it above, the text itself is the object of interest. Two examples of text processing needs that rely on analysis are machine translation — accurate translation relies on large-scale statistical analysis of language, at the phrase level — and automated abstracting and summarization, where a text is shortened in ways that accurately reflect the sense or narrative of the longer text. Add to these two text transformations two others, compression and encryption, powered by analytical algorithms but about form rather than insights.

So we have text analytics on the one hand — text as data, fueling quantitative methods to communicate business-required insights — and text analysis on the other, techniques that characterize and describe a text itself. If the distinction is meaningful for you: Run with it. If you see me as splitting hairs, well I hope I’ve at least imparted a sense what text analysis/analytics can do for business, whatever your goal.

Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

student learning AI
Advanced Degrees Still Matter in an AI-Driven Job Market
Artificial Intelligence Exclusive
mobile device farm
How Mobile Device Farms Strengthen Big Data Workflows
Big Data Exclusive
composable analytics
How Composable Analytics Unlocks Modular Agility for Data Teams
Analytics Big Data Exclusive
fintech startups
Why Fintech Start-Ups Struggle To Secure The Funding They Need
Infographic News

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Council to Counter Web Content Generators’ Growing Clout?

5 Min Read

Getting Started with an Integration Competency Center (ICC)

3 Min Read
big data and financial trading
Big DataExclusive

3 Key Ways Big Data Is Changing Financial Trading

6 Min Read

The Biggest BI Blunder

9 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence
data-driven web design
5 Great Tips for Using Data Analytics for Website UX
Big Data

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?