Cookies help us display personalized product recommendations and ensure you have great shopping experience.

By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    image fx (60)
    Data Analytics Driving the Modern E-commerce Warehouse
    13 Min Read
    big data analytics in transporation
    Turning Data Into Decisions: How Analytics Improves Transportation Strategy
    3 Min Read
    sales and data analytics
    How Data Analytics Improves Lead Management and Sales Results
    9 Min Read
    data analytics and truck accident claims
    How Data Analytics Reduces Truck Accidents and Speeds Up Claims
    7 Min Read
    predictive analytics for interior designers
    Interior Designers Boost Profits with Predictive Analytics
    8 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-25 SmartData Collective. All Rights Reserved.
Reading: My take on why ETL has not always kept up with the integration workload
Share
Notification
Font ResizerAa
SmartData CollectiveSmartData Collective
Font ResizerAa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Warehousing > My take on why ETL has not always kept up with the integration workload
Business IntelligenceData Warehousing

My take on why ETL has not always kept up with the integration workload

RickSherman
RickSherman
4 Min Read
SHARE

Jan11blizzard Why are companies reaching the limits on the workhouse ETL? Here are some thoughts that occurred to me as I was snowblowing 20+ inches of snow today.

Jan11blizzard Why are companies reaching the limits on the workhouse ETL? Here are some thoughts that occurred to me as I was snowblowing 20+ inches of snow today. I’ll be discussing this further in the Thursday DM Radio broadcast.

The main reason why ETL is not keeping up is that demand is significantly increasing:

  • The number of data sources, data volumes, update frequencies, need for data consistency (cleansing, conforming, MDM, CDI, PIM, etc.) are all on the rise.
  • Data architecure and workflows have become more extensive and sophisticated to meet business needs.
  • Companies are using ETL for more than data warehousing
  • ETL is not just batch-oriented nightly loads, but rather data integration using various data transports and supporting various data currencies

ETL or data integration tool capabilties have expanded and there are many techniques that have been around forever that still work today but people aren’t taking advantage of these solutions. There are several issues:

More Read

Is Big Data at Risk of Unleashing Big Brother?
Personalization: The Underappreciated Aspect of Self-Service Business Intelligence
Failing to Address Data Quality and Consistency – A Series of Unfortunate Data Warehousing/Business Intelligence Events
The Future of Trusted Data Management: Striking a Balance between AI and Human Collaboration
In-Memory Analytics and the Future of Business From Booz & Co.

First, there is still too much ETL hand-coding. Although most large corporations use ETL tools to load the data warehouse,  departments or functions within the same companies often hand-code data marts, OLAP cubes or other databases used for business intelligence and analytics. In addition many midsize and smaller firms hand code because they think all ETL tools are expensive.

(They’re wrong. There are plenty of cost-effective and capable ETL tools in the marketplace today.)

Second, people don’t use ETL tools properly. Many ETL developers are either using their ETL tools as if they hand-coded, or they are simply using ETL tools to run hand coded SQL scripts or stored procedures. This approach does not use any of the ETL tool capabilities nor leverage ETL best practices. The result: less efficient, less productive data integration.

Third, people don’t understand data integration. Even when ETL developers do attempt to use ETL tool capabilities they often do not really understand data integration processes.  If they have any training it is only tool specific; they haven’t learned basic data integration processes. In this scenario ETL productivity and performance suffers. The real solution would involve learning the skills necessary to leverage the tools more effectively.

Fourth, people don’t know ETL’s secrets. There are many “old” tried and true techniques and utilities that greatly improve the performance and productivity of ETL processes. But ETL develpers don’t know they exist – probably because they’re not sexy enough to be touted in industry literature.  The classic example is extracting data from a source system into a file and then cleansing, transforming and sorting the file prior to loading into a data warehouse. Although this technique is old-school, it’s a very cost-effective and productive way to significantly improve load performance.

Some steps in the right direction

BI vendors have built many of the best practices in data warehousing, such as various slowly changing dimensions (SCD) and change data capture (CDC) techniques, into their data integration products as ETL transforms.  These transforms significantly improve developer productivity and system performance, and are quite cost-effective.

Another positive note is that, finally, there are many advances in ETL processing that can significantly improve performance. You’ve heard about the benefits of in-memory analytics. In-memory ETL processing results in referential integrity checking and faster lookups,  and improves overall load time.

There are many other capabilities that can likewise improve ETL performance. I will be discussing these points and others during the broadcast.

TAGGED:information extraction
Share This Article
Facebook Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

image fx (60)
How Finance & BI Teams Choose Accounting Software
Big Data Business Intelligence Exclusive
Why the AI Race Is Being Decided at the Dataset Level
Why the AI Race Is Being Decided at the Dataset Level
Artificial Intelligence Big Data Exclusive
image fx (60)
Data Analytics Driving the Modern E-commerce Warehouse
Analytics Big Data Exclusive
ai for building crypto banks
Building Your Own Crypto Bank with AI
Blockchain Exclusive

Stay Connected

1.2kFollowersLike
33.7kFollowersFollow
222FollowersPin

You Might also Like

Making more sense out of Twitter Tweets

5 Min Read

The future and trends of Text Analytics

5 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

ai in ecommerce
Artificial Intelligence for eCommerce: A Closer Look
Artificial Intelligence
ai is improving the safety of cars
From Bolts to Bots: How AI Is Fortifying the Automotive Industry
Artificial Intelligence

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-25 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Username or Email Address
Password

Lost your password?