By using this site, you agree to the Privacy Policy and Terms of Use.
Accept
SmartData CollectiveSmartData CollectiveSmartData Collective
  • Analytics
    AnalyticsShow More
    data-driven white label SEO
    Does Data Mining Really Help with White Label SEO?
    7 Min Read
    marketing analytics for hardware vendors
    IT Hardware Startups Turn to Data Analytics for Market Research
    9 Min Read
    big data and digital signage
    The Power of Big Data and Analytics in Digital Signage
    5 Min Read
    data analytics investing
    Data Analytics Boosts ROI of Investment Trusts
    9 Min Read
    football data collection and analytics
    Unleashing Victory: How Data Collection Is Revolutionizing Football Performance Analysis!
    4 Min Read
  • Big Data
  • BI
  • Exclusive
  • IT
  • Marketing
  • Software
Search
© 2008-23 SmartData Collective. All Rights Reserved.
Reading: Making more sense out of Twitter Tweets
Share
Notification Show More
Aa
SmartData CollectiveSmartData Collective
Aa
Search
  • About
  • Help
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
SmartData Collective > Big Data > Data Mining > Making more sense out of Twitter Tweets
Data Mining

Making more sense out of Twitter Tweets

ThemosKalafatis
Last updated: 2009/03/04 at 12:11 PM
ThemosKalafatis
5 Min Read
SHARE

Over the last 5 posts I have described how unstructured text information from Twitter can be used for Knowledge Extraction. Specific examples were given such as Sentiment Mining for products (Amazon’s Kindle), Segmentation of Twitter users, and finally cluster analysis of the emotions and thoughts expressed from twitter users.
So far I have discussed some ways that text mining could help us in getting more insight on how people think. Now it is time to put Information Extraction and Ontologies to the equation.
Information Extraction (IE) is the automated extraction of any information such as (to name a few) Names (first names, city names, country names etc), facts or events from unstructured text. An example of IE was given in these posts where thousands of adverts of flats are extracted and then data mining analysis is performed to identify what characteristics are important for achieving a high renting price.
Ontologies are used for knowledge representation and may also be used for structuring the information that exists on the web…  

More Read

Instagram data usage tips

5 Innovative Ways To Reduce Instagram Data Usage

How Big Data Analytics on Twitter Can Help Predict Disease Spread [VIDEO]
Twitter Consistently Valuable for Analytics Initiatives
Twitter: Rubbish, Valuable, or Both?
A Small Experiment with Twitter’s Language Detection Algorithm
Over the last 5 posts I have described how unstructured text information from Twitter can be used for Knowledge Extraction. Specific examples were given such as Sentiment Mining for products (Amazon’s Kindle), Segmentation of Twitter users, and finally cluster analysis of the emotions and thoughts expressed from twitter users.
So far I have discussed some ways that text mining could help us in getting more insight on how people think. Now it is time to put Information Extraction and Ontologies to the equation.
Information Extraction (IE) is the automated extraction of any information such as (to name a few) Names (first names, city names, country names etc), facts or events from unstructured text. An example of IE was given in these posts where thousands of adverts of flats are extracted and then data mining analysis is performed to identify what characteristics are important for achieving a high renting price.
Ontologies are used for knowledge representation and may also be used for structuring the information that exists on the web. To give an example, consider the following product keywords :
  • Coke
  • Sprite
  • Dr Pepper
If one asks you what is common about them, your brain looks for generalizations and comes up with the following answers :
  • They are all Carbonated Drinks

  • (Possibly) they all contain sugar since the word “Diet” or “Zero” or “Light” is not mentioned.
Now let’s assume having an Ontology Engine that is able to do this and to be able to infer automatically that all these products are sugar-carbonated drinks. Such an action enables us to extract facts in a more coherent way. The reason behind this is that we lessen the effect discussed on The Statistics of Everyday Talk and thus are able to capture growing trends such as people expressing their thoughts regarding carbonated drinks rather than matching “Coke”, “Sprite” and “Dr Pepper” individually. Without Ontologies such a trend could be easily missed.
By using Ontologies or taxonomies where applicable, an associations discovery algorithm can search in different levels of information detail. For example data miners usually employ taxonomic information (ex. Sprite, Coke, Pepsi = carbonated drinks) when performing associations discovery analysis on Super Markets and the effort of applying taxonomies almost always pays back in terms of the knowledge extracted regarding consumer behavior.
I have used Ontologies over the past three years and have seen them in action. The fact that with Ontologies one could possibly have access to inference and deductive reasoning techniques is of great use. The application of Information Extraction, Natural Language Processing and subsequent insertion of this information in an Ontological setting has many potential applications.

Link to original post

TAGGED: information extraction, ontologies, twitter
ThemosKalafatis March 4, 2009
Share This Article
Facebook Twitter Pinterest LinkedIn
Share

Follow us on Facebook

Latest News

IoT Cybersecurity
4 Common Misconceptions Surrounding IoT Cybersecurity Compliance
Internet of Things
iot and cloud technology
IoT And Cloud Integration is the Future!
Internet of Things
ai in marketing
4 Ways AI Can Improve Your Marketing Strategy
Artificial Intelligence
data security unveiled
Data Security Unveiled: Protecting Your Information in a Connected World
Security

Stay Connected

1.2k Followers Like
33.7k Followers Follow
222 Followers Pin

You Might also Like

Instagram data usage tips
Big Data

5 Innovative Ways To Reduce Instagram Data Usage

5 Min Read

How Big Data Analytics on Twitter Can Help Predict Disease Spread [VIDEO]

1 Min Read
Image
Analytics

Twitter Consistently Valuable for Analytics Initiatives

4 Min Read

Twitter: Rubbish, Valuable, or Both?

4 Min Read

SmartData Collective is one of the largest & trusted community covering technical content about Big Data, BI, Cloud, Analytics, Artificial Intelligence, IoT & more.

AI and chatbots
Chatbots and SEO: How Can Chatbots Improve Your SEO Ranking?
Artificial Intelligence Chatbots Exclusive
AI chatbots
AI Chatbots Can Help Retailers Convert Live Broadcast Viewers into Sales!
Chatbots

Quick Link

  • About
  • Contact
  • Privacy
Follow US
© 2008-23 SmartData Collective. All Rights Reserved.
Go to mobile version
Welcome Back!

Sign in to your account

Lost your password?